STBVH: A Spatial-Temporal BVH for Efficient Multi-Segment Motion Blur

Sven Woop, Attila Áfra, Carsten Benthin

Intel Corporation
Motion Blur

- Fast moving geometry gets blurred for long shutter times
- Often fast moving geometry moves on a straight line (linear motion blur)
- Sometimes fast curved motion (e.g. rotating wheel, fight scenes, spinning dancer, flying bird, etc.)

→ Multi Segment Motion Blur required
Multi Segment Motion Blur

- Represent curved motion as sequence of time steps to be linearly interpolated
- Typically equidistant time steps and often different number of time steps per geometry
Previous Work

Linear Motion BVH using OBB Hyper-trapezoids [Hou et al. 2010]
- Works well for linear motion but inefficient for curved motion.

Multiple Linear Motion BVHs for sufficiently large number of time segments [Embree v2.12.0]
- High performance but memory consumption can be arbitrarily bad.

Sequence of AABBs per BVH node [Grünschloß et al. 2011]
- One BVH topology for entire motion, calculate segment to interpolate per traversal step, packet techniques have to gather bounds

4D kd-tree [Olsson 2007]
- Can shrink time range to simplify motion, kd-tree not good at bounding linear motion, no good build algorithm described

4D BVH using 12 fixed slab directions [Glassner 1988]
- Expensive to traverse (24 distance tests to mostly non-axis aligned planes), fixed directions do not align optimally with motion direction

Combining separate renderings for sufficiently many time segments
- No adaptive noise reduction possible, interactive preview not possible
4D Spatial-Temporal BVH (STBVH)

- N-ary BVH (4 or 8 wide) [Ernst 2008, Dammertz 2008]
 - SOA layout allows efficient use of SIMD instructions during traversal
- Stores spatial *linear bounds* [Qiming Hou et al. 2010]
 - Pair of AABBs that bound the geometry for each time when linearly interpolated to the respective time
 - Efficient support for the common case of linear motion
- Stores temporal bounds as time range [Olsson 2007, Glassner 1988]
 - Efficient support of curved motion through time range reduction
- Two node types for improved performance
 - Spatial-temporal nodes (stores linear bounds and time range)
 - Spatial nodes (stores linear bounds only)
STBVH Advantages

- Efficient handling of different number of time steps per geometry
 - E.g. high temporal resolution possible for main character
 - Large memory savings compared to Embree 2.12.0 implementation

- Efficient handling of longer animations
 - Renderers with large setup times can render multiple frames with one STBVH

- Reduced memory consumption in case of unnecessarily high number of time steps
 - For these parts time ranges do not have to get reduced
Temporal Spatial Bounds Example 1
Temporal Spatial Bounds Example 2

Global linear bounds allow direct interpolation with ray time.
Minimal Traversal Changes

- Ray/box intersection with box interpolated to ray time
- Additional check for time bounds in case of spatial-temporal node
Motion Blur Surface Area Heuristic (MBSAH)

- Motion Blur Surface Area Heuristic
 - \(C_{leaf}(X) = |X|_s \cdot C_I \)
 - \(C_{split}(X, X_0, X_1) = C_T + P(X_0|X) \cdot C_{leaf}(X_0) + P(X_1|X) \cdot C_{leaf}(X_1) \)

- Where
 - \(X \) is the set of pairs of primitives and time ranges
 - \(|X|_s \) is the sum of the number of primitive segments active in the time range
 - \(P(Y|X) = \frac{SA'(Y)}{SA'(X)} \cdot \frac{T(Y)}{T(X)} \)
 - \(T(X) \) calculates the size of the merged time bounds over \(X \)
 - \(SA'(X) \) calculates the surface area of the center time bounds of the linear bounds of \(X \)
MBSAH Advantages

- Handling primitives plus time range
 - Makes time splits of primitives possible

- Counting primitive segments active in time range
 - Increases cost for geometries with many time steps
 - Splitting time at discrete time boundaries produces optimal SAH

- Surface area of linear bounds
 - More accurate than previous approaches
 - Up to 10% render performance improvement for some scenes
STBVH Build

- Top-down construction using MBSAH
 - Build primitive represents primitive for current time range
 - Stores linear bounds and number of active primitive segments
- Object split
 - Bin build primitives in 3 dimensions using centroid of center time bounds
 - Splits build primitives into two disjoint sets with current time range unchanged
- Temporal split
 - Splits current time range at center time (adjusted to hit discrete time boundary)
 - Generate build primitives for both time ranges (most primitives valid in both time ranges)
MBSAH: Temporal Split

Object split

Temporal split

Best
MBSAH: Spatial Split

Object split

Temporal split

Best
Results

Llama
3 time steps: 7M primitives
9 time steps: 1.7M primitives

Barbershop
3 time steps: 1.4M primitives
5 time steps: 2.8M primitives
9 time steps: 3.9M primitives

Train
3 time steps: 0.3M primitives
17 time steps: 2.0M primitives

Turtle Barbarian Crowd
2 time steps: 7.5M primitives
6 time steps: 2.8M primitives
15 time steps: 0.1M primitives

Turtle Barbarian
15 time steps: 0.1M primitives

Turtle Barbarian Rotate 0.5x
9 time steps: 0.1M primitives
Results

- Comparing against LBVH of Embree 2.12.0
 - Separate Linear Motion BVHs for maximal number of linear time segments
 - We integrated our STBVH into Embree thus share algorithmic details of traversal and build

- Only motion blur geometry for benchmarks

- Intel® Xeon® E5-2699 v4 workstation (Broadwell 22 cores, 2.2 GHz)
Memory Consumption

Smaller BVH due to varying number of time segments

<table>
<thead>
<tr>
<th>Llama</th>
<th>Barbershop</th>
<th>Train</th>
<th>Turtle Barbarian Crowd</th>
<th>Turtle Barbarian</th>
<th>Turtle Barbarian Rotate 0.5x</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5x</td>
<td></td>
<td></td>
<td></td>
<td>9x</td>
<td></td>
</tr>
</tbody>
</table>

- LBVH
- STBVH
Build Performance

Faster due to smaller BVH

Slower due to linear bounds binning

- LBVH
- STBVH

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llama</td>
<td>Faster due to smaller BVH</td>
</tr>
<tr>
<td>Barbershop</td>
<td>Slower due to linear bounds binning</td>
</tr>
<tr>
<td>Train</td>
<td>Faster due to smaller BVH</td>
</tr>
<tr>
<td>Turtle Barbarian Crowd</td>
<td>Slower due to linear bounds binning</td>
</tr>
<tr>
<td>Turtle Barbarian Rotate 0.5x</td>
<td>Faster due to smaller BVH</td>
</tr>
</tbody>
</table>
Render Performance

<table>
<thead>
<tr>
<th></th>
<th>LBVH</th>
<th>STBVH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llama</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbershop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Barbarian Crowd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Barbarian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Barbarian Rotate 0.5x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Faster due to less memory traffic

Competitive but slightly slower
Questions?

“High Performance Rendering Appliance” demo at Intel booth #807 at SIGGRAPH