
1

Embree Ray Tracing Kernels for the

Intel® Xeon® and Intel® Xeon Phi™ Architectures

Sven Woop, Carsten Benthin, Ingo Wald

Intel

2 2

Legal Disclaimer and Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk are trademarks of

Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

3 3

Outline

• Embree Overview

• ISPC Overview

• Embree ISPC API

• Implementation Details

• Embree Performance

4

Embree Overview

5 5

Embree Ray Tracing Kernels

Motivation

• Ray tracing is used heavily for professional graphics applications
(Movie Industry, Visualization, Digital Content Creation)

• Implementing a fast ray tracer is very difficult
 Implementations often don’t perform optimal on Intel Architecture

Goal

• Provide the fastest ray tracing kernels to application developers

“Embree is an open source high fidelity visualization toolkit for application developers who

want to create compelling visual applications to deliver an outstanding user experience on

current and future computing architectures. Easy to integrate, Embree provides a blueprint

for scalable and efficient Ray Tracing capabilities that are demanded by media and

entertainment, product design, energy or scientific visualization applications.

6 6

Why Ray Tracing?

Physically based:

• Imagery can be trusted

• Can generate photorealistic images

Conceptually simple:

• Easy to build renderers with

• Effects combine naturally

Embarrassingly parallel:

• Scales to arbitrary number of compute units

• But also very compute hungry !!!!!

Pixel

Light

Source

7 7

Problem: Writing a Fast Ray Tracer is Hard!

• Need deep domain knowledge: many different data structures (kd-trees, octrees,

grids, BVH2, BVH4, ..., hybrid structures) and algorithms (single rays, packets, large

packets, stream tracing, ...) to choose

• Need low-level expert knowledge of hardware: scalability to many cores/CPUs,

efficient use of SIMD units, different ISAs (SSE, AVX, Xeon Phi™)

• Need for multiple implementations: Different ISAs/CPU types favor different data

structures, data layouts, algorithms, and implementations

 Embree is a “middleware” solution!

8 8

What is Embree?

• High fidelity visualization toolkit for application

developers

• Easy to integrate, rapid prototyping

• Highly efficient and scalable Ray Tracing features and

capabilities

• Compatible with present and future compute platforms

• Available as Open Source on http://embree.github.com

(Apache 2.0 license)

http://embree.github.com/

9 9

Embree 1.x Overview

Support for Intel® Xeon® CPUs:

• Optimized for SSE 3-4.1 (and AVX 1)

• Most professional renders use this platform

“Single ray” Interface to Ray Tracing Kernels:

• Application developers can use scalar C++ code

• Easy to integrate into existing applications

High Performance:

• 1.5x – 6x rendering speedup achievable

• 15M triangles/s high quality spatial index build

10 10

Embree 2.0 New Features

• Support for latest Intel® Xeon® Processor family
and Intel® Xeon Phi™ coprocessor products

• Support for “Ray Packets” (4, 8, or 16 rays per packet)

• Integration with Intel® SPMD program compiler
(ISPC, http://ispc.github.com)

• Two-level Hierarchies and fast BVH builders

Embree 2.0 Released Today!

 http://embree.github.com

http://ispc.github.com/
http://embree.github.com/

11 11

How to use Embree?

• As a benchmark to identify performance issues in your own code

• As a library through the Embree API

• As example code by copying code

12 12

Single Ray Tracing not optimal for wide SIMD

Rendering Application

• Shaders leverage 4-wide SSE naturally, e.g. (x,y,z,_) or (r,g,b,a)

• Using wider SIMD units is less efficient and code less readable

Ray Tracing Kernels

• Single ray kernels work well for 4-wide SSE

• Strongly diminishing return for vector widths wider than 4

13 13

How to support Intel® Xeon Phi™ Coprocessor?

Example: Intel® Xeon Phi™ 7120X (http://ark.intel.com)

• Highly parallel architecture (61 cores, 4 threads per core, 1.238GHz)

• Peak floating point performance >2TFlops SP

• 16 GB of high memory bandwidth (320GB/s)

• 30 MB of L2 cache

• 16-wide SIMD ISA, 32 SIMD registers

• SIMD + scalar instr can co-issue

 Great architecture for ray tracing!

http://ark.intel.com/
http://ark.intel.com/

14 14

Ray Packets and SPMD Programming Model is a Solution

Single Program Multiple Data (SPMD) programming model

• One „program“ per SIMD lane (e.g. one pixel per SIMD lane)

• Masking and sequentialization for diverging control flow

• Code „looks“ like scalar code (e.g. OpenCL)

• Automatic, efficient, and guaranteed vectorization

Embree 2.0 supports SPMD programming model

• Support for “Ray Packets” (4, 8, or 16 rays per packet)

• Integration with Intel® SPMD Program Compiler

(ISPC, http://ispc.github.com)

http://ispc.github.com/

15

ISPC Overview

16 16

Intel® SPMD Program Compiler (ISPC)

• Support for scalar and vectorized control flow and data flow

• Masking done automatically

• Compilation to different vector ISAs (SSE, AVX, Xeon Phi™)

• Allows close coupling of C/C++ and ISPC code

(Data structures shared with C/C++ code)

• Available as Open Source from http://ispc.github.com

http://ispc.github.com/

17 17

ISPC Language

• C-based syntax (for, while, if, then else, int, float, …) plus extensions

• Pointers, structs, new, delete, recursion, function pointers, …

• uniform and varying type qualifiers to express scalars and vectors

• Rich standard library: vectorized transcendentals, atomics, ...

18

Embree ISPC API

19 19

Embree ISPC API

• Simple low level Ray Tracing API (build, trace)

• Triangle Meshes and Two Level Scene support

• Support for different acceleration structures

• Support for different traversal algorithms

20 20

Embree ISPC Example: Mesh Creation
/* create triangle mesh */

uniform RTCGeometry* uniform mesh = rtcNewTriangleMesh (12, 8);

/* fill vertex buffer */

uniform RTCVertex* uniform vertices = rtcMapPositionBuffer(mesh);

vertices[0].x = -1; vertices[0].y = -1; vertices[0].y = -1;

...

rtcUnmapPositionBuffer(mesh);

/* fill triangle index buffer */

uniform RTCTriangle* uniform triangles = rtcMapTriangleBuffer(mesh);

triangles[0].v0 = 0; triangles[0].v1 = 1; triangles[0].v2 = 2;

triangles[0].id0 = 0; triangles[0].id1 = 0;

...

rtcUnmapTriangleBuffer(mesh);

/* launch and wait for build task */

launch rtcBuildAccel (mesh);

sync;

/* query default intersector */

uniform RTCIntersector* uniform intersector = rtcQueryIntersector(mesh);

21 21

Embree ISPC Example: Rendering
/* loop over all screen pixels */

foreach (y=0 ... screenHeight-1, x=0 ... screenWidth-1)

{

 /* create primary ray */

 varying Ray ray;

 ray.org = p;

 ray.dir = normalize(add(mul(x,vx,mul(y,vy),vz));

 ray.tnear = 0;

 ray.tfar = inf;

 ray.id0 = ray.id1 = -1;

 /* trace ray */

 intersector->intersect(intersector,ray);

 /* uv-shading and framebuffer write */

 if (ray.id0 != -1)

 pixels[y*width+x] = make_vec3f(ray.u,ray.v,1.0-ray.u-ray.v);

 else

 pixels[y*width+x] = 0;

}

22

Implementation Details

23 23

Algorithms for Intel® Xeon® CPUs

Spatial index structures:
– BVH2, BVH4 (recommended), BVH8, BVH4MB (motion blur)

Triangle representations:
– triangle4 (recommended), triangle8, triangle4i (less memory), ...

Traversal algorithms:
– Single ray (recommended for incoherent workloads)

– SSE packet, AVX packet

– SSE hybrid, AVX hybrid (recommended for coherent workloads)

Ray/triangle intersectors:
– Möller-Trumbore (recommended for performance)

– Plücker variant (recommended for accuracy)

24 24

BVH4 Spatial Index Structure
struct Node4 {

 ssef minx, miny, minz;

 ssef maxx, maxy, maxz;

 Node4* child[4];

}

struct Triangle4 {

 ssef v0x,v0y,v0z;

 ssef e1x,e1y,e1z;

 ssef e2x,e2y,e2z;

 ssef Nx,Ny,Nz;

 ssei id0,id1;

}

25 25

Optimizing BVH4 Traversal for CPUs

• Reduce number of executed instructions

• Reduce data dependencies of critical paths

• Take advantage of special instructions (e.g. SSE, bitscan, etc.)

• Optimize most frequently executed code paths

26 26

Optimizing BVH4 Traversal for CPUs (SSE)

• Load front/back plane based on

direction sign of the ray.

• Balanced min/max trees

• Bitscans to iterate through hit children

• Early exit for 0 children hit (20%)

• 1 child hit (50%): keep next node in

register (instead of push/pop

sequence)

• 2 children hit (20%): keep next node

in register, sort using a branch

while (true) {
 if (isLeaf(node)) goto leaf;
 ssef nearX = (norg.x + node[nearX]) * rdir.x;
 ssef nearY = (norg.y + node[nearY]) * rdir.y;
 ssef nearZ = (norg.z + node[nearZ]) * rdir.z;
 ssef farX = (norg.x + node[farX]) * rdir.x;
 ssef farY = (norg.y + node[farY]) * rdir.y;
 ssef farZ = (norg.z + node[farZ]) * rdir.z;
 ssef near = max(max(nearX,nearY),
 max(nearZ,ray.near));
 ssef far = min(min(farX,farY),
 min(farZ,ray.far));
 int hitmask = movemask(near <= far);
 if (hitmask == 0) goto pop;
 int c = bitscan(hitmask);
 hitmask = clearbit(hitmask,c);
 if (hitmask == 0) {
 node = node.child[c]; continue;
 } …

27 27

Algorithms for Intel® Xeon Phi™ Coprocessor

Spatial index structure:

• BVH4AOS

Traversal algorithms:

• Single ray traversal

• Packet traversal

• Hybrid packet/single ray traversal

Triangle intersector:

• Möller-Trumbore

28 28

Single Ray Traversal for Intel® Xeon Phi™ Coprocessor

• 4-wide BVH in AoS layout, 2 x 64bit cachelines (4 x box min, 4 x box max)

• Use 16-wide SIMD as 4 x 4-wide ‘lanes’, ops using AoS layout: 4 x “xyzw”

• Horizontal reductions to determine hit node with shortest distance

• Critical path optimization for 0,1, and 2 hit nodes

• Triangle intersection: 1 ray vs. 4 triangles (AoS layout)

• Single ray traversal best for incoherent rays

X Y Z W X Y Z W X Y Z W X Y Z W

Op Op Op Op
X Y Z W X Y Z W X Y Z W X Y Z W

29 29

Packet Traversal for Intel® Xeon Phi™ Coprocessor

• 16 rays per packet (fits ISA width)

• 4-wide BVH in AoS layout (same layout as for single ray traversal)

• BVH node test: 16 rays vs. 1 box

• Triangle intersection: 16 rays vs. 1 triangle

• Packet traversal best for coherent rays

30 30

Hybrid Traversal for Intel® Xeon Phi™ Coprocessor

• Real world ray distributions neither fully incoherent nor fully coherent

• Combine packet and single ray traversal into single hybrid traversal

• Hybrid traversal

• Switch between single and packet traversal based on ray coherence

• Use SIMD utilization as measure for ray coherence (bitcount of mask bits)

• Low #active rays per packet (incoherent rays)  single ray traversal

• High #active rays per packet (coherent rays)  packet traversal

• Switch multiple times per packet (need low switch overhead)

31 31

Hybrid Traversal for Intel® Xeon Phi™ Coprocessor

0 0

2

1

4

3

2 1

4 3

• SIMD util < 2  single ray traversal

Packet traversal

Single ray traversal

32

Embree Performance

33 33

Embree Example Path Tracer

• Flexible modular system design

• Virtual interface to cameras, lights, materials, brdfs, etc.

• Materials build from multiple BRDF components

• Support for HDR environment lighting

• C++ and ISPC implementation of renderer

 Entire „Embree 1.x path tracer“ runs on

Xeon® and Xeon Phi™

34 34

Benchmark Settings

• Intel® Xeon® E5-2690 (8 cores @ 2.9 GHz)

• Intel® Xeon Phi™ 7120 (61 cores @ 1.238 Ghz)

• 1024x1024 image resolution, shading takes 25-40% of total rendering time

Scene #triangles

 Imperial Crown of Austria
Martin Lubich, www.loramel.net

4.3 M

Bentley 4.5l Blower (1927) 2.3 M

Asian Dragon
The Stanford 3D Scanning Repository

12.3 M

35 35

BVH4 Build Performance on Xeon® and Xeon Phi™

Scene BVH Build*** [triangles/second]

Xeon* SAH
(best BVH quality)

Xeon Phi** SAH
(best BVH quality)

Speedup

14.9 M 32.3 M 2.16x

15.6 M 31.7 M 2.03x

15.0 M 35.1 M 2.34x

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

*** including triangle acceleration structure build, excluding memory allocation time

36 36

BVH4 Build Performance on Xeon® and Xeon Phi™

Scene BVH Build*** [triangles/second]

Xeon* SAH
(best BVH quality)

Xeon Phi** SAH
(best BVH quality)

Speedup
Xeon Phi** Morton

(reduced BVH qual)

14.9 M 32.3 M 2.16x 160.1 M

15.6 M 31.7 M 2.03x 140.4 M

15.0 M 35.1 M 2.34x 162.1 M

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

*** including triangle acceleration structure build, excluding memory allocation time

37 37

BVH4 Build Performance on Xeon® and Xeon Phi™

Scene BVH Build*** [triangles/second]

Xeon* SAH
(best BVH quality)

Xeon Phi** SAH
(best BVH quality)

Speedup
Xeon Phi** Morton

(reduced BVH qual)

14.9 M 32.3 M 2.16x 160.1 M

15.6 M 31.7 M 2.03x 140.4 M

15.0 M 35.1 M 2.34x 162.1 M  Can rebuild 4.3M crown from

scratch 3.5 times per second!

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

*** including triangle acceleration structure build, excluding memory allocation time

38 38

BVH4 Build Performance on Xeon® and Xeon Phi™

Scene BVH Build*** [triangles/second]

Xeon* SAH
(best BVH quality)

Xeon Phi** SAH
(best BVH quality)

Speedup
Xeon Phi** Morton

(reduced BVH qual)

14.9 M 32.3 M 2.16x 160.1 M

15.6 M 31.7 M 2.03x 140.4 M

15.0 M 35.1 M 2.34x 162.1 M

 … and over SEVEN times per sec

on a Xeon Phi!

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

*** including triangle acceleration structure build, excluding memory allocation time

39 39

BVH4 Build Performance on Xeon® and Xeon Phi™

Scene BVH Build*** [triangles/second]

Xeon* SAH
(best BVH quality)

Xeon Phi** SAH
(best BVH quality)

Speedup
Xeon Phi** Morton

(reduced BVH qual)

14.9 M 32.3 M 2.16x 160.1 M

15.6 M 31.7 M 2.03x 140.4 M

15.0 M 35.1 M 2.34x 162.1 M  … and with reduced quality, at over 35 Hertz

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

*** including triangle acceleration structure build, excluding memory allocation time

40 40

Whitted Style Coherent Rays on Xeon® CPUs*

Scene Rendering [rays/second]

SSE Single Ray SSE Packets AVX Packets Speedup

32.0 M 31.5 M 41.5 M 1.30x

33.5 M 30.0 M 48.0 M 1.43x

33.6 M 31.8 M 43.5 M 1.29x

 Packets and SPMD not much help on SSE …

… but give significant speedup on AVX (wider SIMD)

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz

41 41

Path Traced Incoherent Rays on Xeon® CPUs*

Scene Rendering [rays/second]

SSE Single Ray SSE Packets AVX Packets Speedup

18.8 M 15.3 M 17.8 M 0.94x

22.8 M 17.6 M 21.2 M 0.93x

23.1 M 21.3 M 25.5 M 1.10x

But: Packets/SPMD won’t help much on incoherent rays

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz

42 42

Whitted Style Coherent Rays on Xeon Phi™

Scene Rendering [rays/second]

Xeon Phi* Single Ray Xeon Phi* Hybrid Speedup

44.9 M 109.0 M 2.42x

45.2 M 113.8 M 2.51x

50.9 M 122.0 M 2.39x

On Xeon Phi (16 wide SIMD) Packets/SPMD even more important than on Xeon
with AVX  2.4-2.5x speedup over single ray for coherent rays

* Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

43 43

Path Traced Incoherent Rays on Xeon Phi™

Scene Rendering [rays/second]

Xeon Phi* Single Ray Xeon Phi* Hybrid Speedup

34.7 M 62.7 M 1.80x

38.1 M 75.5 M 1.98x

47.5 M 87.5 M 1.84x

… and still a significant 1.8-2x speedup for incoherent rays ( hybrid)

* Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

44 44

Whitted Style Coherent Rays on Xeon® CPUs and Xeon Phi™

Scene Rendering [rays/second]

Xeon* AVX Packets Xeon Phi** Hybrid Speedup

41.5 M 109.0 M 2.62x

48.0 M 113.8 M 2.37x

43.5 M 122.0 M 2.80x

Best on Xeon (AVX, packet) vs best on Xeon Phi (hybrid)

 Xeon Phi up to 2.8x faster than fastest Xeon for coherent rays

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

45 45

Path Traced Incoherent Rays on Xeon® CPUs and Xeon Phi™

Scene Rendering [rays/second]

Xeon* Single Ray Xeon Phi** Hybrid Speedup

18.8 M 62.7 M 3.33x

22.8 M 75.5 M 3.31x

23.1 M 87.5 M 3.78x

Best on Xeon (SSE,single) vs best on Xeon Phi (hybrid)

 Xeon Phi up to ~3.8x faster than fastest Xeon for incoherent rays

* Intel® Xeon® E5-2690, 8 cores @ 2.9 GHz ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz

46 46

Conclusion

• Kernels for both Xeon® (SSE, AVX) and Xeon Phi™
• With support for both C/C++ and ISPC, fast BVH builds, etc

• Both single-ray and packet kernels
• Single-ray for existing single ray based renderers

• Packet kernels for packet/SPMD-enabled renderers

• For Xeon Phi™ : hybrid kernel that is fast for both coherent and incoherent rays

• One sample renderer each for both C++ and ISPC interfaces
• Perfect example for how to write a complex renderer in ISPC

 Application developer can freely chose which hardware architecture (Xeon®

/Xeon Phi™) and software (C++/SIMD/ISPC) is best for his particular case!

47

Questions?

Embree 2.0 available on embree.github.com

