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Embree Overview 
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Embree Ray Tracing Kernels 

Motivation 

• Ray tracing is used heavily for professional graphics applications 
(Movie Industry, Visualization, Digital Content Creation) 

• Implementing a fast ray tracer is very difficult  
 Implementations often don’t perform optimal on Intel Architecture 

Goal 

• Provide the fastest ray tracing kernels to application developers 

 

 

 

 

“Embree is an open source high fidelity visualization toolkit for application developers who 

want to create compelling visual applications to deliver an outstanding user experience on 

current and future computing architectures. Easy to integrate, Embree provides a blueprint 

for scalable and efficient Ray Tracing capabilities that are demanded by media and 

entertainment, product design, energy or scientific visualization applications. 
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Why Ray Tracing? 

Physically based:  

• Imagery can be trusted 

• Can generate photorealistic images 

Conceptually simple:  

• Easy to build renderers with 

• Effects combine naturally 

Embarrassingly parallel:  

• Scales to arbitrary number of compute units 

• But also very compute hungry !!!!! 

 

Pixel 

Light 

Source 
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Problem: Writing a Fast Ray Tracer is Hard! 

• Need deep domain knowledge: many different data structures (kd-trees, octrees, 

grids, BVH2, BVH4, ..., hybrid structures) and algorithms (single rays, packets, large 

packets, stream tracing, ...) to choose 

• Need low-level expert knowledge of hardware: scalability to many cores/CPUs, 

efficient use of SIMD units, different ISAs (SSE, AVX, Xeon Phi™) 

• Need for multiple implementations: Different ISAs/CPU types favor different data 

structures, data layouts, algorithms, and implementations 

 Embree is a “middleware” solution! 
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What is Embree? 

• High fidelity visualization toolkit for application 

developers 

• Easy to integrate, rapid prototyping 

• Highly efficient and scalable Ray Tracing features and 

capabilities  

• Compatible with present and future compute platforms 

• Available as Open Source on http://embree.github.com 

(Apache 2.0 license) 

 

 

 

http://embree.github.com/
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Embree 1.x Overview 

Support for Intel® Xeon® CPUs:  

• Optimized for SSE 3-4.1 (and AVX 1) 

• Most professional renders use this platform 

“Single ray” Interface to Ray Tracing Kernels:  

• Application developers can use scalar C++ code 

• Easy to integrate into existing applications 

High Performance:  

• 1.5x – 6x rendering speedup achievable 

• 15M triangles/s high quality spatial index build 
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Embree 2.0 New Features 

• Support for latest Intel® Xeon® Processor family  
and Intel® Xeon Phi™ coprocessor products 

• Support for “Ray Packets” (4, 8, or 16 rays per packet) 

• Integration with Intel® SPMD program compiler  
(ISPC, http://ispc.github.com ) 

• Two-level Hierarchies and fast BVH builders 

 

Embree 2.0 Released Today! 

 http://embree.github.com 

  

 

http://ispc.github.com/
http://embree.github.com/
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How to use Embree? 

• As a benchmark to identify performance issues in your own code 

• As a library through the Embree API 

• As example code by copying code 
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Single Ray Tracing not optimal for wide SIMD 

Rendering Application 

• Shaders leverage 4-wide SSE naturally, e.g. (x,y,z,_) or (r,g,b,a) 

• Using wider SIMD units is less efficient and code less readable 

Ray Tracing Kernels 

• Single ray kernels work well for 4-wide SSE 

• Strongly diminishing return for vector widths wider than 4 
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How to support Intel® Xeon Phi™ Coprocessor? 

Example: Intel® Xeon Phi™ 7120X (http://ark.intel.com) 

• Highly parallel architecture (61 cores, 4 threads per core, 1.238GHz) 

• Peak floating point performance >2TFlops SP 

• 16 GB of high memory bandwidth (320GB/s) 

• 30 MB of L2 cache 

• 16-wide SIMD ISA, 32 SIMD registers 

• SIMD + scalar instr can co-issue 

 

 Great architecture for ray tracing! 

http://ark.intel.com/
http://ark.intel.com/
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Ray Packets and SPMD Programming Model is a Solution 

Single Program Multiple Data (SPMD) programming model 

• One „program“ per SIMD lane (e.g. one pixel per SIMD lane) 

• Masking and sequentialization for diverging control flow 

• Code „looks“ like scalar code (e.g. OpenCL) 

• Automatic, efficient, and guaranteed vectorization 

Embree 2.0 supports SPMD programming model 

• Support for “Ray Packets” (4, 8, or 16 rays per packet) 

• Integration with Intel® SPMD Program Compiler  

(ISPC, http://ispc.github.com ) 

http://ispc.github.com/
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ISPC Overview 
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Intel® SPMD Program Compiler (ISPC) 

• Support for scalar and vectorized control flow and data flow 

• Masking done automatically 

• Compilation to different vector ISAs (SSE, AVX, Xeon Phi™) 

• Allows close coupling of C/C++ and ISPC code  

(Data structures shared with C/C++ code) 

• Available as Open Source from http://ispc.github.com 

 

http://ispc.github.com/
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ISPC Language 

• C-based syntax (for, while, if, then else, int, float, …) plus extensions 

• Pointers, structs, new, delete, recursion, function pointers, …  

• uniform and varying type qualifiers to express scalars and vectors 

• Rich standard library: vectorized transcendentals, atomics, ... 
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Embree ISPC API 
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Embree ISPC API 

• Simple low level Ray Tracing API (build, trace) 

• Triangle Meshes and Two Level Scene support 

• Support for different acceleration structures 

• Support for different traversal algorithms 
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Embree ISPC Example: Mesh Creation 
/* create triangle mesh */ 

uniform RTCGeometry* uniform mesh = rtcNewTriangleMesh (12, 8); 

 

/* fill vertex buffer */ 

uniform RTCVertex* uniform vertices = rtcMapPositionBuffer(mesh); 

vertices[0].x = -1; vertices[0].y = -1; vertices[0].y = -1;  

... 

rtcUnmapPositionBuffer(mesh); 

 

/* fill triangle index buffer */ 

uniform RTCTriangle* uniform triangles = rtcMapTriangleBuffer(mesh); 

triangles[0].v0  = 0; triangles[0].v1  = 1; triangles[0].v2 = 2;   

triangles[0].id0 = 0; triangles[0].id1 = 0;  

... 

rtcUnmapTriangleBuffer(mesh); 

 

/* launch and wait for build task */ 

launch rtcBuildAccel (mesh);  

sync; 

 

/* query default intersector */ 

uniform RTCIntersector* uniform intersector = rtcQueryIntersector(mesh); 
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Embree ISPC Example: Rendering 
/* loop over all screen pixels */ 

foreach (y=0 ... screenHeight-1, x=0 ... screenWidth-1) 

{ 

  /* create primary ray */ 

  varying Ray ray; 

  ray.org = p; 

  ray.dir = normalize(add(mul(x,vx,mul(y,vy),vz)); 

  ray.tnear = 0; 

  ray.tfar = inf; 

  ray.id0 = ray.id1 = -1; 

 

  /* trace ray */ 

  intersector->intersect(intersector,ray); 

   

  /* uv-shading and framebuffer write */ 

  if (ray.id0 != -1) 

    pixels[y*width+x] = make_vec3f(ray.u,ray.v,1.0-ray.u-ray.v); 

  else  

    pixels[y*width+x] = 0; 

} 
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Implementation Details 
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Algorithms for Intel® Xeon® CPUs 

Spatial index structures:  
– BVH2, BVH4 (recommended), BVH8, BVH4MB (motion blur) 

Triangle representations: 
– triangle4 (recommended), triangle8, triangle4i (less memory), ... 

Traversal algorithms:  
– Single ray (recommended for incoherent workloads) 

– SSE packet, AVX packet 

– SSE hybrid, AVX hybrid (recommended for coherent workloads) 

Ray/triangle intersectors:  
– Möller-Trumbore (recommended for performance) 

– Plücker variant (recommended for accuracy) 
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BVH4 Spatial Index Structure 
struct Node4 { 

  ssef minx, miny, minz; 

  ssef maxx, maxy, maxz; 

  Node4* child[4]; 

} 

struct Triangle4 { 

  ssef v0x,v0y,v0z; 

  ssef e1x,e1y,e1z; 

  ssef e2x,e2y,e2z; 

  ssef Nx,Ny,Nz; 

  ssei id0,id1; 

} 
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Optimizing BVH4 Traversal for CPUs 

• Reduce number of executed instructions 

• Reduce data dependencies of critical paths 

• Take advantage of special instructions (e.g. SSE, bitscan, etc.) 

• Optimize most frequently executed code paths 
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Optimizing BVH4 Traversal for CPUs (SSE) 

• Load front/back plane based on 

direction sign of the ray. 

• Balanced min/max trees 

• Bitscans to iterate through hit children 

• Early exit for 0 children hit (20%) 

• 1 child hit (50%): keep next node in 

register (instead of push/pop 

sequence) 

• 2 children hit (20%): keep next node 

in register, sort using a branch 

while (true) { 
  if (isLeaf(node)) goto leaf; 
  ssef nearX = (norg.x + node[nearX]) * rdir.x; 
  ssef nearY = (norg.y + node[nearY]) * rdir.y; 
  ssef nearZ = (norg.z + node[nearZ]) * rdir.z; 
  ssef farX  = (norg.x + node[farX ]) * rdir.x; 
  ssef farY  = (norg.y + node[farY ]) * rdir.y; 
  ssef farZ  = (norg.z + node[farZ ]) * rdir.z; 
  ssef near  = max(max(nearX,nearY), 
                   max(nearZ,ray.near)); 
  ssef far   = min(min(farX,farY), 
                   min(farZ,ray.far)); 
  int hitmask = movemask(near <= far); 
  if (hitmask == 0) goto pop; 
  int c = bitscan(hitmask); 
  hitmask = clearbit(hitmask,c);  
  if (hitmask == 0) {  
    node = node.child[c]; continue; 
  } … 
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Algorithms for Intel® Xeon Phi™ Coprocessor 

Spatial index structure:  

• BVH4AOS 

Traversal algorithms:  

• Single ray traversal 

• Packet traversal 

• Hybrid  packet/single ray traversal 

Triangle intersector:  

• Möller-Trumbore 
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Single Ray Traversal for Intel® Xeon Phi™ Coprocessor 

• 4-wide BVH in AoS layout, 2 x 64bit cachelines ( 4 x box min, 4 x box max) 

• Use 16-wide SIMD as 4 x 4-wide ‘lanes’, ops using AoS layout: 4 x “xyzw” 

 

 

 

• Horizontal reductions to determine hit node with shortest distance 

• Critical path optimization for 0,1, and 2 hit nodes 

• Triangle intersection: 1 ray vs. 4 triangles (AoS layout) 

• Single ray traversal best for incoherent rays 

X Y Z W X Y Z W X Y Z W X Y Z W 

Op Op Op Op 
X Y Z W X Y Z W X Y Z W X Y Z W 
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Packet Traversal for Intel® Xeon Phi™ Coprocessor 

• 16 rays per packet (fits ISA width) 

• 4-wide BVH in AoS layout (same layout as for single ray traversal) 

• BVH node test: 16 rays vs. 1 box  

• Triangle intersection: 16 rays vs. 1 triangle 

• Packet traversal best for coherent rays 
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Hybrid Traversal for Intel® Xeon Phi™ Coprocessor 

• Real world ray distributions neither fully incoherent nor fully coherent 

• Combine packet and single ray traversal into single hybrid traversal 

• Hybrid traversal 

• Switch between single and packet traversal based on ray coherence 

• Use SIMD utilization as measure for ray coherence (bitcount of mask bits) 

• Low #active rays per packet (incoherent rays)  single ray traversal 

• High #active rays per packet (coherent rays)  packet traversal 

• Switch multiple times per packet (need low switch overhead) 
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Hybrid Traversal for Intel® Xeon Phi™ Coprocessor 

0 0 

2 

1 

4 

3 

2 1 

4 3 

• SIMD util < 2  single ray traversal 

 

Packet traversal 

Single ray traversal 
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Embree Performance 
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Embree Example Path Tracer 

• Flexible modular system design 

• Virtual interface to cameras, lights, materials, brdfs, etc. 

• Materials build from multiple BRDF components 

• Support for HDR environment lighting 

• C++ and ISPC implementation of renderer 

 Entire „Embree 1.x path tracer“ runs on  

Xeon® and Xeon Phi™ 
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Benchmark Settings 

• Intel® Xeon® E5-2690 (8 cores @ 2.9 GHz) 

• Intel® Xeon Phi™ 7120 (61 cores @ 1.238 Ghz) 

• 1024x1024 image resolution, shading takes 25-40% of total rendering time 

Scene #triangles 

 Imperial Crown of Austria 
Martin Lubich, www.loramel.net 

4.3 M 

Bentley 4.5l Blower (1927) 2.3 M 

Asian Dragon 
The Stanford 3D Scanning Repository 

12.3 M 
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BVH4 Build Performance on Xeon® and Xeon Phi™  

Scene BVH Build*** [triangles/second] 

Xeon* SAH 
(best BVH quality) 

Xeon Phi** SAH 
(best BVH quality) 

Speedup 

14.9 M 32.3 M 2.16x 

15.6 M 31.7 M 2.03x 

15.0 M 35.1 M 2.34x 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  

*** including triangle acceleration structure build, excluding memory allocation time 
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BVH4 Build Performance on Xeon® and Xeon Phi™ 

Scene BVH Build*** [triangles/second] 

Xeon* SAH 
(best BVH quality) 

Xeon Phi** SAH 
(best BVH quality) 

Speedup 
Xeon Phi** Morton 

(reduced BVH qual) 

14.9 M 32.3 M 2.16x 160.1 M 

15.6 M 31.7 M 2.03x 140.4 M 

15.0 M 35.1 M 2.34x 162.1 M 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  

*** including triangle acceleration structure build, excluding memory allocation time 
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BVH4 Build Performance on Xeon® and Xeon Phi™ 

Scene BVH Build*** [triangles/second] 

Xeon* SAH 
(best BVH quality) 

Xeon Phi** SAH 
(best BVH quality) 

Speedup 
Xeon Phi** Morton 

(reduced BVH qual) 

14.9 M 32.3 M 2.16x 160.1 M 

15.6 M 31.7 M 2.03x 140.4 M 

15.0 M 35.1 M 2.34x 162.1 M  Can rebuild 4.3M crown from 

scratch 3.5 times per second! 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  

*** including triangle acceleration structure build, excluding memory allocation time 



38 38 

BVH4 Build Performance on Xeon® and Xeon Phi™ 

Scene BVH Build*** [triangles/second] 

Xeon* SAH 
(best BVH quality) 

Xeon Phi** SAH 
(best BVH quality) 

Speedup 
Xeon Phi** Morton 

(reduced BVH qual) 

14.9 M 32.3 M 2.16x 160.1 M 

15.6 M 31.7 M 2.03x 140.4 M 

15.0 M 35.1 M 2.34x 162.1 M 

 … and over SEVEN  times per sec  

on a Xeon Phi! 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  

*** including triangle acceleration structure build, excluding memory allocation time 
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BVH4 Build Performance on Xeon® and Xeon Phi™ 

Scene BVH Build*** [triangles/second] 

Xeon* SAH 
(best BVH quality) 

Xeon Phi** SAH 
(best BVH quality) 

Speedup 
Xeon Phi** Morton 

(reduced BVH qual) 

14.9 M 32.3 M 2.16x 160.1 M 

15.6 M 31.7 M 2.03x 140.4 M 

15.0 M 35.1 M 2.34x 162.1 M  … and with reduced quality, at over 35 Hertz 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  

*** including triangle acceleration structure build, excluding memory allocation time 
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Whitted Style Coherent Rays on Xeon® CPUs* 

Scene Rendering [rays/second] 

SSE Single Ray SSE Packets AVX Packets Speedup 

32.0 M 31.5 M 41.5 M 1.30x 

33.5 M 30.0 M 48.0 M 1.43x 

33.6 M 31.8 M 43.5 M 1.29x 

 Packets and SPMD not much help on SSE … 

… but give significant speedup on AVX (wider SIMD) 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  
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Path Traced Incoherent Rays on Xeon® CPUs* 

Scene Rendering [rays/second] 

SSE Single Ray SSE Packets AVX Packets Speedup 

18.8 M 15.3 M 17.8 M 0.94x 

22.8 M 17.6 M 21.2 M 0.93x 

23.1 M 21.3 M 25.5 M 1.10x 

But: Packets/SPMD won’t help much on incoherent rays 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  
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Whitted Style Coherent Rays on Xeon Phi™ 

Scene Rendering [rays/second] 

Xeon Phi* Single Ray Xeon Phi* Hybrid Speedup 

44.9 M 109.0 M 2.42x 

45.2 M 113.8 M 2.51x 

50.9 M 122.0 M 2.39x 

On Xeon Phi (16 wide SIMD) Packets/SPMD even more important than on Xeon 
with AVX  2.4-2.5x speedup over single ray for coherent rays 

* Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  
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Path Traced Incoherent Rays on Xeon Phi™ 

Scene Rendering [rays/second] 

Xeon Phi* Single Ray Xeon Phi* Hybrid Speedup 

34.7 M 62.7 M 1.80x 

38.1 M 75.5 M 1.98x 

47.5 M 87.5 M 1.84x 

… and still a significant 1.8-2x speedup for incoherent rays ( hybrid) 

* Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  
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Whitted Style Coherent Rays on Xeon® CPUs and Xeon Phi™ 

Scene Rendering [rays/second] 

Xeon* AVX Packets Xeon Phi** Hybrid Speedup 

41.5 M 109.0 M 2.62x 

48.0 M 113.8 M 2.37x 

43.5 M 122.0 M 2.80x 

Best on Xeon (AVX, packet) vs best on Xeon Phi (hybrid) 

 Xeon Phi up to 2.8x faster than fastest Xeon for coherent rays 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  
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Path Traced Incoherent Rays on Xeon® CPUs and Xeon Phi™ 

Scene Rendering [rays/second] 

Xeon* Single Ray Xeon Phi** Hybrid Speedup 

18.8 M 62.7 M 3.33x 

22.8 M 75.5 M 3.31x 

23.1 M 87.5 M 3.78x 

Best on Xeon (SSE,single) vs best on Xeon Phi (hybrid) 

 Xeon Phi up to ~3.8x faster than fastest Xeon for incoherent rays 

* Intel® Xeon®  E5-2690, 8 cores @ 2.9 GHz  ** Intel® Xeon Phi™ 7120, 61 cores @ 1.238 GHz  
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Conclusion 

• Kernels for both Xeon® (SSE, AVX) and Xeon Phi™ 
• With support for both C/C++ and ISPC, fast BVH builds, etc 

• Both single-ray and packet kernels 
• Single-ray for existing single ray based renderers 

• Packet kernels for packet/SPMD-enabled renderers 

• For Xeon Phi™ : hybrid kernel that is fast for both coherent and incoherent rays 

• One sample renderer each for both C++ and ISPC interfaces 
• Perfect example for how to write a complex renderer in ISPC 

 Application developer can freely chose which hardware architecture (Xeon® 

/Xeon Phi™) and software (C++/SIMD/ISPC) is best for his particular case! 
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Questions? 

Embree 2.0 available on embree.github.com 


