
Embree: A Kernel Framework for Efficient CPU Ray Tracing

Ingo Wald † Sven Woop † Carsten Benthin † Gregory S. Johnson † Manfred Ernst ‡

Intel Corporation

Figure 1: Images produced by renderers which use the open source Embree ray tracing kernels. These scenes are computationally challenging
due to complex geometry and spatially incoherent secondary rays. From left to right: The White Room model by Jay Hardy rendered in
Autodesk RapidRT, a car model rendered in the Embree path tracer, a scene from the DreamWorks Animation movie “Peabody & Sherman”
rendered with a prototype path tracer, and the Imperial Crown of Austria model by Martin Lubich rendered in the Embree path tracer.

Abstract

We describe Embree, an open source ray tracing framework for x86
CPUs. Embree is explicitly designed to achieve high performance
in professional rendering environments in which complex geometry
and incoherent ray distributions are common. Embree consists of
a set of low-level kernels that maximize utilization of modern CPU
architectures, and an API which enables these kernels to be used in
existing renderers with minimal programmer effort. In this paper,
we describe the design goals and software architecture of Embree,
and show that for secondary rays in particular, the performance of
Embree is competitive with (and often higher than) existing state-
of-the-art methods on CPUs and GPUs.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—[Ray Tracing]

Keywords: ray tracing, SIMD, SPMD, CPU, coprocessor

Links: DL PDF WEB

1 Introduction

The combination of Moore’s law and the rapid growth in functional
unit replication has substantially increased the compute capability
in modern CPUs. However, efficiently exploiting this capability for
ray tracing is challenging. For example, kernels for stepping a ray
through a spatial data structure frequently exhibit fine-grained data
dependent branching and irregular memory access patterns, inhibit-
ing auto-vectorization. Worse, the optimal mapping of a kernel to

† ingo.wald, sven.woop, carsten.benthin, gregory.s.johnson@intel.com
‡ ernst.manfred@gmx.de (current affiliation: Google Incorporated)

© 2014 ACM. This is the author’s version of the work. It is posted here by
permission of the ACM for your personal use. Not for redistribution. The
definitive version was published in ACM Transactions on Graphics 33(4),
August 2014.

http://doi.acm.org/10.1145/2601097.2601199

a specific architecture is not always obvious, even for an experi-
enced programmer. Application and workload-specific constraints
can also affect the choice of data structure and traversal algorithm,
which in turn may affect the vectorization strategy. Consequently,
many ray tracing applications do not use the most efficient com-
bination of algorithms, data structures, and parallelization strategy
for the target architecture, and so run slower than they could.

Embree is an open source ray tracing framework that enables high
performance in new and existing renderers by efficiently exploiting
the full compute capability of modern x86 architectures. Embree is
directed at professional rendering environments in which detailed
geometry and secondary illumination effects with incoherent ray
distributions are common. To achieve high performance across a
wide range of workloads and x86 architectures, Embree includes a
suite of hand optimized, low-level kernels for accelerating spatial
data structure construction and traversal. For example, both packet
and single ray intersection queries are supported as well as logic for
dynamically switching between these methods at runtime. These
kernels are accessed through a straightforward and flexible API that
minimally constrains the design of the calling application.

2 Related Work

Recent work in ray tracing has largely focused on minimizing the
total number of rays needed to render a high fidelity image, or on
improving the average performance of traced rays [Glassner 1989;
Havran 2000; Wald 2004]. Embree addresses the latter, primarily
by providing hand-vectorized kernels for x86 CPUs which support
the SSE and AVX instruction sets.

2.1 Packet Tracing

It is possible to vectorize ray traversal of spatial data structures such
as bounding volume hierarchies (BVH) by assigning rays to vector
lanes, and tracing this ray “packet” through the BVH. Since packet
tracing is independent of the vector unit width or instruction set
architecture (ISA), it is broadly applicable and can achieve high
vector utilization for spatially coherent rays. However, packet trac-
ing performs less well for incoherent rays, and the renderer itself

Intel, Intel Core, Xeon, and Xeon Phi are trademarks of the Intel Cor-
poration in the U.S. and other countries. Other product names and brands
may be claimed as property of others.

http://doi.acm.org/10.1145/2601097.2601199
http://portal.acm.org/ft_gateway.cfm?id=2601199&type=pdf
http://embree.github.io/
http://doi.acm.org/10.1145/2601097.2601199

must be parallelized so that multiple rays are available to be traced
together. This dependence on spatial coherence and parallelism in
the renderer inhibits the use of packet tracing.

Though classical packet tracing traces a single ray per vector lane,
it is also possible to trace packets with (effectively) more rays than
lanes. For example, multi-frusta methods trace a frustum per lane,
and each frustum is a proxy for a set of rays bounded by the frustum
volume [Reshetov et al. 2005; Benthin and Wald 2009]. These
techniques can in some cases achieve higher performance relative to
simple packet tracing, but are even more sensitive to ray coherence.

2.2 Single-Ray Vectorization

Other work has focused on using vectorization to accelerate spa-
tial data structure traversal for individual rays. For example, multi-
branching BVH structures enable multiple nodes or primitives to
be tested for intersection against the same ray in parallel. Quad-
branching BVH (BVH4) data structures perform well with 4-wide
and 16-wide vector units [Ernst and Greiner 2008; Dammertz et al.
2008; Benthin et al. 2012], but higher branching factors offer di-
minishing returns [Wald et al. 2008].

Generally speaking, single ray vectorization is faster than packet
tracing for incoherent ray distributions (and can be used within a
scalar renderer), but is slower for coherent rays. For this reason, hy-
brid techniques have been developed which can dynamically switch
between packet tracing where rays are coherent, and single-ray vec-
torization where not [Benthin et al. 2012].

2.3 Ray Tracing Systems

Several high performance ray tracing systems exist for both CPUs
and GPUs [Wald et al. 2002; Bigler et al. 2006]. OptiX is a state-of-
the-art system designed to simplify development of new renderers
for GPUs [Parker et al. 2010]. OptiX consists of low level kernels,
a programmable ray tracing pipeline, a domain specific program-
ming model and compiler, and a scene graph specification. Much
of this infrastructure is needed to transparently split work between
the CPU and GPU, schedule work items across cores, and page data
between memory on the host and GPU. In contrast, a key design
goal for Embree is to accelerate ray tracing in existing renderers
for CPUs, with maximal flexibility and minimal programmer ef-
fort. This design goal leads to a low-level kernel framework rather
than a complete system.

3 Embree Design Goals

The development of Embree is guided by four observations. First,
even full-featured photorealistic renderers can be built from a small
set of common ray tracing operations (e.g. spatial data structure
build and traversal). Second, CPU architectures are in principle
suited to compute intensive workloads with abundant fine-grained
data dependent branching (e.g. hierarchical data structure traversal),
but achieving high throughput is challenging in practice. Third, ray
tracing is widely used in professional rendering applications, and
there is a need to achieve high performance in these applications.
Fourth, much recent work in accelerating ray tracing has not found
its way into actual use due to the complexity of integrating these
techniques into existing renderers (e.g. parallel data structure build,
single-ray vectorization) or because the techniques are highly spe-
cialized (e.g. packet tracing). Three design goals follow from these
observations.

Embree Kernel Layer

CPU

Application-Specific Renderer

Embree API

Embree Common Infrastructure

Build: SAH, Spatial Splits, Morton, Refit
Traversal: BVH4, BVH4 Motion Blur

Intersection: Triangle1/4/8, User Defined Geometry, Instances

Figure 2: The major components of a complete system which uses
Embree. An application-specific renderer typically uses the Embree
kernels through a compact API. The kernels implement the func-
tionality required to build a spatial data structure and trace rays.
The Embree common infrastructure layer provides cross-platform
wrappers for low-level atomics, synchronization, threading, etc.

3.1 Focus on Professional Rendering

Embree is intended to enable high performance ray tracing for pro-
fessional rendering workloads. Two important characteristics of
these workloads is that they include large models, and contain a
mix of primary rays with high spatial coherence and secondary rays
with low spatial coherence. For this reason, the Embree kernels are
designed to exploit parallelism at multiple granularities, with an
emphasis on efficient vectorization and architecture-specific, hand-
optimized implementations.

3.2 Broad Applicability

Achieving maximal performance on modern processors requires
exploiting parallelism in all layers of a rendering system. However,
for several practical reasons (e.g. large existing rendering codebases
with proprietary effects), a completely new rendering system is less
likely to find wide adoption than a low-level kernel framework. As
a result, Embree is focused on providing efficient parallel imple-
mentations of common ray tracing operations through a small set
of kernels. This focus avoids placing restrictions on the design of
the renderer, increasing the cases in which the kernels can be used.

3.3 Ease of Use

Embree is designed to be used in existing renderers with minimal
effort. The ray tracing operations supported in Embree are exposed
in a straightforward way via a compact and stable API. This API
minimizes changes to existing render codes, and speeds adoption of
future improvements in ray tracing algorithms supported in Embree
(users need only download the latest version). In addition, Embree
is fully open source to avoid licensing restrictions and allow users
to inspect and optionally modify every part of its implementation.

4 Embree Overview

Figure 2 illustrates the major components of a complete rendering
system which uses Embree. Though we provide a fully functional
path tracer built on the Embree kernels (Section 7), a more common
use case is to modify an existing application-specific renderer to use
the kernels directly. The Embree kernels implement data structure
construction and traversal, and ray-primitive intersection in each of
several supported ISAs (Section 5). The kernels can be accessed
through a straightforward API that hides implementation details
such as data structure memory layout (Section 6). The kernels are

in turn implemented over a common set of low-level components
which include cross-platform wrappers for atomic and vector par-
allel operations, synchronization, and threading. Through this layer
Embree supports all current x86 architectures, operating systems
(Linux, Microsoft Windows, Apple Mac OS), and compilers (Intel
C++ Compiler, GCC, Clang, and Microsoft Visual Studio).

4.1 Bounding Volume Hierarchy Variants

The Embree kernels operate exclusively on bounding volume hier-
archies. Broadly speaking, BVH data structures have comparatively
small memory footprints and low build times, and their generally
shallow depth enables fast traversal. Further, the ability to fix the
number of children per node facilitates single-ray SIMD traversal
and intersection. We have found that a BVH branching factor of 4
is efficient for both packet and single-ray SIMD operations across
multiple ISAs and workloads, relative to higher or lower branching
factors (Subsection 2.2).

Embree supports BVH variants optimized for memory consump-
tion or performance, to fit application-specific needs. The leaves of
the bvh4.triangle4i subtype store references to primitives. This
BVH is compact in memory, but traversal requires address indirec-
tion that inhibits prefetching, and costly memory gather operations
that reduce the efficiency of intersecting primitives in parallel. In
contrast, a leaf of the bvh4.triangle4 subtype stores a pointer to
a contiguous memory region containing the primitive data for that
node. Ray traversal and intersection with this BVH subtype is sig-
nificantly faster than in the former case, but requires more memory.

Embree also provides a BVH with support for linear motion blur
[Grünschloßet al. 2011]. This subtype (bvh4mb) stores two sets of
vertex coordinates, corresponding to the positions at times t = 0
and t = 1, from which the vertex position at time t is linearly in-
terpolated during intersection. Similarly, two sets of bounds are
stored per interior node, one for each value of t, and these bounds
are interpolated during traversal. The interpolated bounds are not
guaranteed to be optimal, but are conservatively correct.

4.2 Geometric Primitive Representations

Embree supports multiple primitive types. Each type is designed
to maximize performance on a given ISA, reduce memory usage,
or is optimized for an application-specific priority (e.g. consistency
during intersection). A triangle{1,4,8}{i,v,n} primitive is a
record that stores vertex indices (i), vertex data (v), or preprocessed
edge and normal data (n) for 1, 4, or 8 triangles in a SIMD friendly
memory layout. Each subtype implements an intersection method,
which tests a single ray against the 1, 4, or 8 triangles. For example,
the triangleXn subtypes implement Möller Trumbore intersection
for performance [Kensler and Shirley 2006], and triangle1n is
used during packet traversal (Subsection 5.1.3), while triangle4n

and 8n are used during single-ray and hybrid traversal on SSE and
AVX respectively (Subsections 5.1.1, 5.1.4).

5 Embree Kernel Layer

The core component of Embree is a set of high performance kernels
for constructing bounding volume hierarchies (Subsection 5.2) and
tracing rays (Subsection 5.1). The tracing kernels are implemented
internally using separate components for BVH traversal and ray-
triangle intersection. Individual kernels can be composited, allow-
ing construction and traversal of multi-level BVHs, data structures
that span multiple meshes, and geometry instantiation (Section 6).

5.1 Traversal and Intersection Kernels

In principle, the number of traversal and intersection kernels needed
to address the BVH and primitive types, vectorization methods, and
ISAs supported by Embree is large. However, not all combinations
yield high performance or are valid across all ISAs. Further, the
Embree kernels are templated, enabling a single implementation to
be used with multiple BVH and primitive representations. Lastly,
conditional compilation is used to support specialized features such
as face culling and ray masks.

5.1.1 Single-Ray Triangle Intersection

There are several ways a single ray can be tested for intersection in
parallel against the triangle(s) in a BVH leaf node, and the approach
used in Embree varies by ISA. The ray can be tested against multi-
ple triangles in parallel (denoted by the primitive type triangleXn

where X > 1), or the separate channels (e.g. x, y, z) of a single ray-
triangle intersection test can be computed in parallel (X = 1), or a
combination can be used (N > X > 1 where N is the vector width
of the ISA). The choice of methods used in Embree on a given ISA
is informed by a comparative analysis of the performance of the
vectorization options suited to that ISA.

On processors with 4-wide SSE instructions, Embree supports both
triangle1n and triangle4n primitive types, where the latter is
generally faster. On processors with 8-wide AVX / AVX2 instruc-
tions, triangle4n and triangle8n types are supported. The two
perform similarly on SandyBridge1 CPUs, while 8n is often faster
(3%) on Haswell2 CPUs due to L1 cache bandwidth optimizations.
On machines equipped with Intel® Xeon Phi™ coprocessors, 16-
wide IMCI instructions are available. Here, Embree operates on 4
triangles in parallel by treating the 16-wide vector units as a set of
4-wide vector units, each of which is assigned a triangle1n prim-
itive [Benthin et al. 2012]. A triangle16n variant was tested, but
found to inhibit construction of high quality BVHs, and is unused.

5.1.2 Single-Ray BVH Traversal

Quad-BVH structures in which child nodes are stored together in
memory, enable efficient single-ray traversal on architectures with
a vector width of 4 [Ernst and Greiner 2008; Dammertz et al. 2008].
At each traversal step, the ray is tested for intersection against the 4
child nodes in parallel.

The Embree single-ray BVH traversal kernels provide highly tuned
implementations of this approach for several current ISAs. On SSE
4.1, higher throughput (around 3%) is achieved by mapping some
floating point vector operations to integer units. This is possible for
rays starting at or behind the origin, since a signed integer compare
gives the correct result (and negative values remain smaller than
positive values) when a floating point number is reinterpreted as an
integer value. On AVX / AVX2, the same traversal method is used
(we have found no way to effectively map the 4 box tests to 8-wide
SIMD), with incremental performance improvements coming from
AVX2 instructions such as fused multiply add (4%). On the Intel
Xeon Phi coprocessor, the 16-wide IMCI instruction set is exploited
(particularly horizontal shuffle, low latency loads) to perform the 4
box intersection tests with the x, y, and z components computed
in parallel [Benthin et al. 2012]. In addition, the Embree traversal
kernels seek to fill the available issue slots on superscalar architec-
tures by generating the right mix of instructions. This optimization
is particularly important on the Intel Xeon Phi coprocessor, which
lacks out-of-order execution.

1 Intel® Xeon® E5-2690 processor.
2 Intel® Core™ i7-4770 processor.

5.1.3 Packet Traversal and Intersection

Packet tracing is conceptually simple compared to single-ray SIMD
traversal and intersection. In classical packet tracing, rays in a given
packet are intersected with the same BVH node or triangle at each
step of traversal. However, it is also possible to implement packet
tracing following a single program multiple data (SPMD) program-
ming model. Here, the rays of a packet are independently traversed
through the BVH, and each ray is potentially tested against different
BVH nodes or triangles [Aila and Laine 2009].

The Embree packet kernels implement classical rather than SPMD
packet tracing. This approach simplifies the control flow, enables
the use of load-and-broadcast memory operations in place of costly
gathers, and amortizes scalar computation across SIMD lanes. The
performance is further improved through prefetching, minimizing
data dependencies, and architecture-specific optimizations. The lat-
ter include generating the optimal mix of instructions needed to fill
issue slots, and efficiently exploiting instructions unique to the ISA.
For this reason, kernels are implemented for each ISA even though
packet tracing is logically independent of the ISA vector width.

5.1.4 Hybrid Traversal and Intersection

In scenes with a mix of coherent and incoherent rays, BVH traversal
and intersection performance can benefit from dynamically switch-
ing between packet and single-ray kernels [Benthin et al. 2012]. Yet
the memory storage order for a BVH optimized for packets may be
suboptimal for single-ray methods (the converse may also be true).
For example, the Embree packet intersection kernels test multiple
rays against a single triangle while the single-ray kernels typically
intersect a single ray with multiple triangles. The storage order
of the triangles is different in both cases (e.g. triangle1n versus
triangle4n), but we have found the difference in packet tracing
performance to be minimal.

For this reason, we allow a given BVH type in Embree to be used
with both single-ray and packet traversal and intersection kernels,
enabling the implementation of a hybrid ray traversal mode. This
mode begins traversal using packets, and dynamically switches to
single-ray traversal when the number of active rays in a packet falls
below a threshold [Benthin et al. 2012]. This mode can improve
traversal performance by 50% compared to packets alone.

5.2 BVH Construction Kernels

Embree is directed at professional rendering environments in which
static or dynamic scenes with hundreds of millions of primitives are
common. As a result, BVH construction performance is important.
Embree provides build kernels focused on producing higher quality
BVH structures (Subsection 5.2.1) or on higher performance BVH
structures (Subsection 5.2.2). This distinction between quality and
performance is relative, since both kernels are multithreaded and
vectorized, and can achieve high build rates (Section 8.1).

5.2.1 Binned SAH BVH Construction

A high quality BVH is one in which the average ray traversal cost
is minimized. Embree constructs a BVH optimized for traversal
cost using object partitioning with the surface area heuristic (SAH)
[Wald 2007] and spatial splits [Stich et al. 2009]. During construc-
tion, both methods are tested per node and the spatial partitioning
which yields the lowest estimated cost is used.

The Embree implementation of the binned SAH algorithm proceeds
in 3 stages. Threads cooperatively bin and partition triangles from
the same BVH node(s) while the triangle count is large (> 256K).

Individual threads bin and partition triangles from different nodes
and add the resulting child nodes to a shared work queue, when the
triangle count is less than 256K but greater than 4K. Finally, threads
process different nodes and their children to completion when the
triangle count is small (< 4K). For the triangleX types where X

> 1, the SAH cost function is modified to reflect that X triangles
can be intersected for the same cost as one. This encourages (but
does not guarantee) splits containing multiples of X triangles.

On the Intel Xeon Phi coprocessor, the binned SAH algorithm is
modified to exploit the additional task parallelism available on this
architecture. All threads initially bin and partition triangles from
the same node, until the number of children exceeds the core count.
Each core then processes a different node, with threads working co-
operatively until the number of child nodes exceeds the thread count
per core (4). Finally, different nodes are processed per thread. This
modification improves overall build performance by up to 10%.

The Embree binned SAH kernel can be used with or without spatial
splits for improved build quality or performance respectively. We
use a modified form of spatial splits in which a single plane is tested
at the spatial center of the node in each dimension, rather than mul-
tiple candidate planes along each axis. This method reduces build
quality compared to the original algorithm but is faster and retains
the key advantage – the ability to break up long diagonal triangles.
Since spatial splits increase the number of triangle references, we
place a global limit on scene size. Spatial splits are disabled once
this limit is reached.

5.2.2 Morton-Code BVH Construction

The highest performance BVH build kernel in Embree uses Morton
codes to express the construction process in terms of a simple radix
sort [Lauterbach et al. 2009]. In the first stage of the algorithm, all
threads cooperatively compute the centroid of the bounding box of
each triangle, and the associated Morton code. Key / value pairs
representing the code and associated triangle, are stored together in
a single 64-bit value, and these pairs are sorted using a parallel radix
sort. On the Intel Xeon Phi coprocessor, this implementation sorts
800 million pairs per second. The BVH hierarchy is then computed
by partitioning triangles based on their Morton codes. Initially, all
threads cooperatively partition triangles from the same node until
the number of child nodes is larger than the number of threads, at
which point different nodes are processed on different threads. The
process terminates at a leaf when there are fewer than 4 triangles.

6 Embree API

The Embree kernels can be accessed through an included API. This
API is straightforward, compact, and stable across Embree releases.
The API includes functions for defining geometry, building a BVH
over this geometry, and issuing intersection and occlusion queries.
Figure 3 illustrates an example in which the Embree API is used to
intersect a ray with a scene containing a triangle mesh. Though use
of the API is not required, it can simplify application development.
Importantly, the API hides technical details such as which combina-
tion of kernels and data layout in memory give the best performance
for a given combination of geometry and ISA. The API assumes the
kernels and application are in the same address space, and does not
support an offload model for coprocessors.

6.1 Specifying Geometry

The Embree API supports several geometry types including triangle
meshes, instances, and user-specified data types. A triangle mesh is
defined by vertex data and the vertex indices composing each face.
This is only the data necessary for BVH construction and primitive

intersection. All other per-face or per-vertex data (e.g. shading nor-
mals) is considered to be in the domain of the application, ensuring
that Embree remains compact and without the need to support more
general data in a way that works with all possible applications.

User-defined geometry types are specified by providing bounding
boxes and callback routines for ray-primitive intersection. This
flexibility is similar to that provided in OptiX, although Embree
supports custom callbacks via function pointers while OptiX uses a
compiler framework to combine user-specified intersection kernels
with OptiX traversal kernels.

6.2 Kernel Selection

Several options can be set on geometry to denote properties such as
static or dynamic content, or motion blur. Other options are used
to indicate application-specific priorities (e.g. BVH optimization
for performance or memory usage), the anticipated ray distribution
(e.g. coherent or incoherent), and the number of rays to be issued
per query (e.g. 1, 4, 8, or 16). Embree chooses the combination
of BVH construction and ray traversal kernels which are expected
to yield the best performance for the given options and the current
CPU. Kernels are selected at run-time via dynamic code dispatch.

6.3 BVH Configuration

Several configuration options affect the BVH type built for a given
scene. For static scenes, a single bvh4 is built over all geometry,
with the primitive layout in memory (Subsection 4.2) chosen based
on the BVH compactness and ray coherence options set by the user.
For dynamic scenes, a two-level BVH is built with a separate bvh4
per mesh [Wald et al. 2003]. Each sub-BVH is built using a binned
SAH kernel in the case of static meshes, a refitting kernel in the
case of deformable meshes, or a Morton-code builder in the case
of fully dynamic geometry. As a special optimization for scenes
with overlapping meshes, BVH nodes with a large surface area are
iteratively replaced with their children until a threshold is reached.

7 Embree Sample Path Tracer

To illustrate the performance of the Embree kernels in a complete
system, we have developed a fully functional path tracer with scalar
and vectorized variations. The scalar renderer is used as a baseline
for performance analysis, while the vectorized form indicates the
performance potentially achievable in a fully parallel professional
rendering application.

7.1 Scalar Reference Path Tracer

Our scalar path tracer is implemented in C++ using several common
language features including templates, virtual functions, and STL
containers. This renderer contains no explicit vectorization code,
but does use the Embree Common Infrastructure (Figure 2), which
defines several high-level tuple types (e.g. points, colors) and auto-
matically and transparently maps these tuples and associated arith-
metic operations to low-level SIMD types and intrinsics. Using this
layer, it is possible to implement renderers in code which appears
to be scalar, but which benefits to a degree from vectorization.

The design of this path tracer broadly follows that of PBRT [Pharr
and Humphreys 2004], and includes the renderer itself, integrators,
samplers, materials, and BRDFs. Ambient, directional, and point
lights are supported, as well as an HDRI environment light with 2D
importance sampling. Materials can be composed from one or more
BRDFs (e.g. dielectric layers, microfacets), and several non-trivial
materials are included like brushed metal and multi-layer metallic
paint.

// create a container for scene geometry
RTCScene scene = rtcNewScene(...);

// add a triangle mesh object to the scene
unsigned id = rtcNewTriangleMesh(scene, ...);

// write vertex positions into vtx[] array
vtx = rtcMapBuffer(scene, id, RTC_VERTEX_BUFFER);
...
rtcUnmapBuffer(scene, id, RTC_VERTEX_BUFFER);

// write vertex indices per face into tri[] array
tri = rtcMapBuffer(scene, id, RTC_INDEX_BUFFER);
...
rtcUnmapBuffer(scene, id, RTC_INDEX_BUFFER);

// indicate that the scene is fully defined
rtcCommit(scene);

// initialize a ray
RTCRay ray;
...

// hit result is returned in ray.{geomID, ...}
rtcIntersect(scene, ray);

// discard the scene and its contents
rtcDeleteScene(scene);

Figure 3: A simple example using the Embree API. A ray is traced
into a scene with a single triangle mesh. A scene is a container
for multiple geometries of potentially different types, while a geom-
etry is a collection of primitives. This distinction allows Embree
to efficiently support dynamic content, by using separate BVH data
structures for individual geometries.

The path trace integrator is unidirectional (rays issue from the eye)
and uses quasi-Monte Carlo sampling, Russian-roulette termina-
tion, and local evaluation of direct illumination. Bidirectional path
tracing, photon mapping, and multiple importance sampling are not
supported. However, we believe this path tracer is sufficiently rich
in features to be representative of a real-world renderer.

7.2 Vectorized Path Tracer

Single-ray SIMD traversal and intersection (Subsection 2.2) has the
advantage that it can be used within a renderer which is otherwise
scalar, and can achieve good utilization for a vector width of 4.
However, single-ray methods are less effective for 8 and 16-wide
vectors [Benthin et al. 2012]. Here, packet and hybrid packet /
single-ray techniques are necessary to achieve high utilization, but
require a renderer capable of generating multiple rays in parallel.
Parallelism in the renderer is also needed to overcome Amdahl’s
Law. If shading and sampling together are roughly as expensive as
ray traversal, even an infinitely fast traversal kernel cannot achieve
more than a 2× speedup in total per-frame performance.

Though a shading language compiler can be used to generate vec-
torized code that utilizes the Embree packet and hybrid kernels, we
have implemented a vectorized path tracer using the Intel SPMD
Program Compiler (ISPC) [Pharr and Mark 2012]. An approach
based on the SPMD programming model in a high level language,
avoids limiting the path tracer code to a given ISA or vector width.
Further, ISPC is designed for use with CPUs and supports language
and compiler features familiar to C++ developers such as recursion,
function pointers, and linking multiple program objects. All shad-
ing and sampling code is implemented in ISPC, and the renderer
accesses the Embree kernels via ISPC bindings in the Embree API.

Figure 4: Models used for evaluating the performance of Embree. From left to right: Headlight (800K triangles), Bentley (2.3M triangles),
Dragon (7.4M triangles), Power Plant (12.7M triangles), and the Imperial Crown of Austria from Figure 1 (4.8M triangles). Embree is often
used in production rendering environments with models of much greater complexity.

The vectorized path tracer is used in our evaluation (Section 8) to
compare the performance of the Embree packet / hybrid kernels
with the single-ray SIMD kernels in the scalar path tracer. For this
reason, we hold both path tracers to a similar design, code structure,
and feature set. Since ISPC does not support C++, we emulate in-
heritance and virtual functions in the vectorized path tracer through
the use of function pointers. In addition, we avoid ray reordering
to increase SIMD utilization, but note that this technique is likely
to offer a benefit similar to that in GPU-based ray tracing systems
[Laine et al. 2013].

8 Evaluation

Evaluating the performance of rendering systems is challenging.
The performance of a given renderer is highly sensitive to properties
of the workload tested (e.g. mix of ray coherence). Further, Embree
is not itself a complete system, and so the performance will vary
based on properties of the application in which it is used (e.g. degree
of vectorization). Finally, when comparing renderers on different
hardware architectures, it can be difficult to isolate the performance
benefits attributable to intrinsic advantages of the architecture from
those due to the design of the renderer.

We address these challenges in three ways. We evaluate the benefit
of specific design features in Embree (e.g. single-ray SIMD versus
packet traversal) by comparing the relative performance of render-
ers built on Embree with and without these features enabled (Table
1, 2). We evaluate Embree relative to state-of-the-art GPU methods,
by comparing the performance of a renderer built on Embree with a
renderer built in OptiX, where the feature set of the two renderers is
closely aligned (Table 3, 4). In all cases, we use workloads which
are representative of the size, complexity, and illumination effects
commonly used in professional rendering environments (Figure 4).

8.1 BVH Construction Performance

Embree BVH build times and build rates3 are shown in Table 1 for
the binned SAH kernel, and the Morton-code kernel. The reported
times measure the interval between the point at which triangle data
is available from the application, and the point at which a completed
acceleration structure becomes available for ray traversal.

These results indicate that Embree can reach interactive build rates
on CPUs for multi-million triangle scenes, and this performance
compares favorably to existing methods on CPUs and GPUs. For
example, Karras et al. [2013] report BVH build rates of between
30 and 40 million triangles per second using an NVIDIA GeForce

3 Embree results are reported where noted for the following systems: an
Intel Core i7-4770 Haswell system (4 cores, 3.5GHz clock), a dual-socket
Intel Xeon E5-2690 SandyBridge system (16 cores total, 2.9GHz clock),
and an Intel Xeon Phi 7120 coprocessor (61 cores, 1.28GHz). Embree 2.2
is used, as compiled with Intel Composer XE 14.0.1 and ISPC 1.6.0.

GTX Titan GPU. These rates are similar to those for the Embree
binned SAH build kernel on an Intel Xeon Phi coprocessor, despite
the higher peak FLOPs available on the GPU.

The performance of BVH construction on the Haswell and Sandy-
Bridge processors appears to be less competitive compared to that
of the Intel Xeon Phi coprocessor. However, the results for the latter
do not include the time to upload data across the PCI bus. Once this
cost is included, the performance variance between the processors
and coprocessor is reduced (Table 4).

8.2 Ray Traversal Performance

Table 2 reports traversal rates3 for primary rays and full path traced
illumination for a scalar renderer based on the Embree single-ray
SIMD traversal kernels (Subsection 7.1), and a vectorized renderer
based on the Embree hybrid traversal kernels (Subsection 7.2). For
each experiment Embree selects the BVH subtype and triangle stor-
age order for the given kernels, ray coherence, and scene geometry.
These render times are only indicative of the results achievable with
the Embree kernels. The actual performance in a given application
will vary by renderer, architecture, and workload.

Vectorization in the renderer potentially improves the performance
of shading and sampling code, and enables the use of the Embree
packet and hybrid traversal kernels. The results in Table 2 illustrate
both benefits, and indicate that a fully vectorized renderer is particu-
larly important to exploiting the compute capability of architectures
with wide vector widths, such as the Intel Xeon Phi coprocessor.

In some cases, design limitations or the level of effort required may
make it infeasible to vectorize a renderer. Here, the Embree single-
ray SIMD kernels may still be used to improve the performance of
ray traversal. Compared to a scalar path tracer with scalar traversal,
the single-ray SIMD kernels can yield a speedup in total frame time
of 2 (on Haswell) to 8.6 (on the Intel Xeon Phi coprocessor).

8.3 Performance Relative to OptiX

State-of-the-art renderers on GPUs are known to achieve very high
performance. For example, Karras et al. [2013] report 350 million
rays per second for path tracing using an NVIDIA GeForce GTX
Titan. However, the shading and sampling complexity included in
these results, and the performance impact of less coherent ray dis-
tributions is unclear.

For this reason, we compare scalar and vectorized versions of a path
tracer based on the Embree kernel framework, with a functionally-
similar path tracer implemented in OptiX. All 3 renderers compute
diffuse-only shading to minimize the impact of this application-
dependent computation on render time. For this comparison we

4 OptiX results are reported where noted for an NVIDIA GeForce GTX
Titan with 6GB of memory, and OptiX version 3.5.1 built with CUDA 5.5.

Embree Binned SAH Builder (Higher Quality) Embree Morton-Code Builder (Higher Performance)
Scene Haswell 2× SandyBridge Xeon Phi Haswell 2× SandyBridge Xeon Phi

Headlight (0.8M) 142 ms 7M 82 ms 10M 23 ms 35M 24 ms 34M 11 ms 75M 6 ms 136M
Bentley (2.3M) 393 ms 6M 179 ms 13M 63 ms 37M 70 ms 33M 28 ms 83M 16 ms 147M
Crown (4.8M) 816 ms 6M 394 ms 12M 126 ms 39M 143 ms 33M 77 ms 63M 32 ms 150M

Dragon (7.4M) 1210 ms 6M 587 ms 13M 183 ms 40M 220 ms 33M 98 ms 75M 51 ms 141M
Power Plant (12.7M) 2501 ms 5M 1040 ms 12M 384 ms 33M 432 ms 30M 170 ms 75M 97 ms 131M

(a) (b)
Table 1: Embree BVH build times (a) and build rates in triangles per second (b) for the binned Surface Area Heuristic (SAH) kernel with
spatial splits disabled (Subsection 5.2.1) and Morton-code kernel (Subsection 5.2.2). The former yields higher quality BVH structures for
irregular, triangulated scenes, while the latter is much faster at the cost of lower quality hierarchies. Memory allocation time is excluded.

Embree Primary Rays (Including Simple Shading) Embree Path Tracing (Including Full Shading)
Scene Haswell 2× SandyBridge Xeon Phi Haswell 2× SandyBridge Xeon Phi

Headlight 38M 89M 2.3× 110M 210M 1.9× 80M 374M 4.6× 12M 12M 1.0× 38M 34M 0.9× 31M 52M 1.7×
Bentley 52M 113M 2.2× 148M 284M 1.9× 99M 400M 4.0× 19M 23M 1.2× 61M 61M 1.0× 37M 96M 2.6×
Crown 59M 138M 2.3× 183M 349M 2.0× 105M 464M 4.4× 15M 17M 1.1× 46M 46M 1.0× 35M 84M 2.4×

Dragon 49M 96M 2.0× 131M 234M 1.8× 96M 339M 3.5× 20M 28M 1.4× 62M 75M 1.2× 47M 117M 2.3×
Power Plant 14M 27M 1.9× 33M 62M 1.9× 27M 93M 3.4× 9M 9M 1.0× 28M 29M 1.1× 22M 35M 1.6×

(a) (b) (b / a)
Table 2: Render performance (rays per second) when using the Embree kernels in a complete path tracer. Performance is shown for primary
rays only, and for full path tracing. For each test, results are reported for (a) a scalar C++ renderer with the Embree single-ray SIMD kernels
(Subsection 7.1) and (b) a vectorized renderer written in ISPC with the Embree hybrid packet / single-ray SIMD kernel (Subsection 7.2). Both
use a BVH produced by the binned SAH build kernel with spatial splits disabled (Table 1). Performance is measured as the total rays traced
divided by total frame time, including sampling (16 samples per pixel) and shading (typically 30 to 50% of the total frame time). All images
were rendered at 1920×1080 pixel resolution.

Embree Single-Ray Embree Hybrid OptiX
Scene 2× SandyBridge Xeon Phi GTX Titan

Headlight 66M 70M 134M 136M 72M 80M
Bentley 54M 61M 90M 98M 53M 56M
Crown 45M 48M 64M 69M 37M 36M

Dragon 47M 50M 84M 85M 45M 50M
Power Plant 32M 45M 43M 59M 44M 41M

(a) (b) (c) (d)
Table 3: Performance in rays per second for a scalar renderer with
the Embree single-ray SIMD kernels (Subsections 5.1.1, 5.1.2), a
parallel renderer written in ISPC with the Embree hybrid packet /
single-ray SIMD kernel (Subsection 5.1.4), and an OptiX renderer.
All three renderers are diffuse-only path tracers. Embree results are
shown for a BVH without (a) and with (b) spatial splits. Similarly,
OptiX results are shown for a TRBVH (c) and a SBVH (d).

have enabled the fast and high quality TRBVH in Optix and spatial
splits in the Embree BVH build kernel. The performance in rays-
per-second for the 3 renderers is shown in Table 3, including shad-
ing and sampling3,4. Startup times including BVH construction and
data upload (but not scene file parsing) are shown in Table 4. In all
cases the Embree and OptiX renderers perform comparably.

9 Conclusion

In this paper, we describe Embree, a kernel framework for efficient
ray tracing on x86 CPUs. Embree is directed at professional render-
ing environments in which scenes with high geometric complexity
and indirect illumination are the norm rather than the exception. To
address this focus, Embree provides a set of commonly used kernels
optimized for different ISA vector widths, workloads (e.g. coherent
and incoherent ray distributions, static and dynamic scenes), and
application-specific priorities (e.g. maximal performance or mini-
mal memory usage). Renderers built on these kernels can achieve
BVH build and ray traversal performance comparable to (and often
higher than) existing methods on any current CPU or GPU.

Embree Binned SAH Builder OptiX
Scene 2× SandyBridge Xeon Phi GTX Titan

Headlight 0.1s 0.2s 0.3s 0.3s 0.4s 6.5s
Bentley 0.3s 0.4s 1.5s 1.6s 0.7s 14.4s
Crown 0.5s 0.9s 1.6s 1.7s 1.1s 36.5s

Dragon 0.7s 1.4s 1.5s 1.6s 1.4s 44.7s
Power Plant 1.3s 2.8s 2.9s 3.2s 2.5s 113.3s

(a) (b) (c) (d)
Table 4: Start times for the Embree and OptiX based renderers,
including API calls, memory allocation, data upload (for the Intel
Xeon Phi coprocessor and NVIDIA GeForce GTX Titan), and BVH
construction. Embree times are reported for BVH structures built
without (a) and with (b) spatial splits. OptiX times are reported
for a GPU build of a BVH without spatial splits (c) and a single-
threaded CPU build of a BVH with spatial splits (d).

Further, this kernel-level approach is broadly applicable and avoids
placing limits on the design of a complete rendering application.
For example, the Embree kernels enable maximal performance in
renderers capable of tracing multiple rays in parallel, but there is no
requirement that the renderer be parallelized. The Embree single-
ray SIMD kernels can be used in a scalar renderer, via the same API.
By seamlessly supporting both options, Embree enables developers
to incrementally move from scalar to fully parallel rendering.

However, this flexibility comes with a tradeoff. Embree is not itself
a stand-alone global illumination system, nor a drop-in replacement
for existing rendering engines. As a consequence, Embree cannot
address system-level optimizations such as ray reordering, adaptive
sampling and reconstruction, or paging of large model data between
a host and an accelerator (unlike OpenRT or OptiX). In addition,
Embree lacks built-in support for texture mapping and volume ren-
dering. For these reasons, we do not claim Embree is the best choice
for every CPU based renderer. Rather, Embree offers a combination
of performance, flexibility, and ease of use that is potentially useful
in many applications.

Acknowledgements

The bedroom scene from the movie “Peabody & Sherman” is cour-
tesy of DreamWorks Animation SKG. The model of the Imperial
Crown of Austria is provided by Martin Lubich5. The White Room
model is courtesy of Jay Hardy.

We would like to thank Ram Ramanujam, Paresh Pattani, Jim Hur-
ley, Bill Mark, Chris Seitz, and Joe Curley for their guidance and
backing. We thank the Intel ISPC compiler team for their contin-
uing support. We also thank the many ISVs and users of Embree
(particularly Louis Feng, Evan Smyth, and Eric Tabellion) for their
valuable feeback and contributions.

References

AILA, T., AND LAINE, S. 2009. Understanding the Efficiency of
Ray Traversal on GPUs. In Proceedings of High-Performance
Graphics, 145–149.

BENTHIN, C., AND WALD, I. 2009. Efficient Ray Traced Soft
Shadows using Multi-Frusta Tracing. In Proceedings of High-
Performance Graphics, 135–144.

BENTHIN, C., WALD, I., WOOP, S., ERNST, M., AND MARK,
W. R. 2012. Combining Single and Packet-Ray Tracing for Ar-
bitrary Ray Distributions on the Intel MIC Architecture. IEEE
Transactions on Visualization and Computer Graphics 18, 9,
1438–1448.

BIGLER, J., STEPHENS, A., AND PARKER, S. G. 2006. Design
for Parallel Interactive Ray Tracing Systems. In Proceedings of
the IEEE Symposium on Interactive Ray Tracing, 187–196.

DAMMERTZ, H., HANIKA, J., AND KELLER, A. 2008. Shal-
low Bounding Volume Hierarchies for Fast SIMD Ray Tracing
of Incoherent Rays. In Proceedings of the 19th Eurographics
Conference on Rendering, 1225–1234.

ERNST, M., AND GREINER, G. 2008. Multi Bounding Volume
Hierarchies. In Proceedings of the IEEE / Eurographics Sympo-
sium on Interactive Ray Tracing, 35–40.

GLASSNER, A. 1989. An Introduction to Ray Tracing. Morgan
Kaufmann.

GRÜNSCHLOSS, L., STICH, M., NAWAZ, S., AND KELLER, A.
2011. MSBVH: An Efficient Acceleration Data Structure for
Ray Traced Motion Blur. In Proceedings of High-Performance
Graphics, 65–70.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. PhD thesis,
Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University in Prague.

KARRAS, T., AND AILA, T. 2013. Fast Parallel Construction of
High-Quality Bounding Volume Hierarchies. In Proceedings of
High-Performance Graphics, 89–99.

KENSLER, A., AND SHIRLEY, P. 2006. Optimizing Ray-Triangle
Intersection via Automated Search. In Proceedings of the IEEE
Symposium on Interactive Ray Tracing, 33–38.

KENSLER, A. 2008. Tree Rotations for Improving Bounding Vol-
ume Hierarchies. In Proceedings of the IEEE Symposium on
Interactive Ray Tracing, 73–76.

5 http://www.loramel.net

LAINE, S., KARRAS, T., AND AILA, T. 2013. Megakernels Con-
sidered Harmful: Wavefront Path Tracing on GPUs. In Proceed-
ings of High-Performance Graphics, 137–143.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH Construction on GPUs. In
Computer Graphics Forum: Proceedings of Eurographics, 375–
384.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. OptiX:
A General Purpose Ray Tracing Engine. In ACM SIGGRAPH
2010 Papers, 66:1–66:13.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufman.

PHARR, M., AND MARK, B. 2012. ISPC - A SPMD compiler for
high-performance CPU programming. In Proceedings of Inno-
vative Parallel Computing, 1–13.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
Level Ray Tracing Algorithm. In ACM SIGGRAPH 2005 Papers,
1176–1185.

STICH, M., FRIEDRICH, H., AND DIETRICH, A. 2009. Spatial
Splits in Bounding Volume Hierarchies. In Proceedings of High-
Performance Graphics, 7–13.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2002. OpenRT
- A Flexible and Scalable Rendering Engine for Interactive
3D Graphics. Tech. rep., Saarland University. Available at
http://graphics.cs.uni-sb.de/Publications.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed
Interactive Ray Tracing of Dynamic Scenes. In Proceedings of
the IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, 11–20.

WALD, I., BENTHIN, C., AND BOULOS, S. 2008. Getting Rid
of Packets: Efficient SIMD Single-Ray Traversal using Multi-
branching BVHs. In Proceedings of the IEEE / Eurographics
Symposium on Interactive Ray Tracing, 49–57.

WALD, I. 2004. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Saarland University.

WALD, I. 2007. On fast Construction of SAH-based Bounding
Volume Hierarchies. In Proceedings of the IEEE / Eurographics
Symposium on Interactive Ray Tracing, 33–40.

WALD, I. 2012. Fast Construction of SAH BVHs on the Intel
Many Integrated Core (MIC) Architecture. IEEE Transactions
on Visualization and Computer Graphics 18, 1, 47–57.

