
Efficient Ray Tracing of Subdivision Surfaces using Tessellation Caching

Carsten Benthin1 Sven Woop1 Matthias Nießner3 Kai Selgard2 Ingo Wald1

1Intel Corporation 2University of Erlangen-Nuremberg 3Stanford University

Figure 1: Example subdivision surface scenes rendered with diffuse path tracing (up to 8 bounces, 7− 12 secondary rays/primary ray).
Right: the Courtyard scene (66K patches after feature-adaptive subdivision) is adaptively-tessellated into 1.4M triangles from scratch per
frame, and ray traced with over 90M rays per second (including shading) on a high-end Intel R©Xeon R© processor system using our efficient
lazy-build caching scheme. Left: four Barbarians embedded in the Sponza Atrium scene (426K patches) and adaptively-tessellated into 11M
triangles are ray traced with 40M rays per second. A 60MB lazy-build cache allows for rendering this scene with over 91% of the performance
of an unbounded memory cache. Compared to ray tracing a pre-tessellated version, the memory consumption is reduced by 6−7×.

Abstract

A common way to ray trace subdivision surfaces is by construct-
ing and traversing spatial hierarchies on top of tessellated input
primitives. Unfortunately, tessellating surfaces requires a substan-
tial amount of memory storage, and involves significant construc-
tion and memory I/O costs. In this paper, we propose a lazy-build
caching scheme to efficiently handle these problems while also ex-
ploiting the capabilities of today’s many-core architectures. To this
end, we lazily tessellate patches only when necessary, and utilize
adaptive subdivision to efficiently evaluate the underlying surface
representation. The core idea of our approach is a shared lazy eval-
uation cache, which triggers and maintains the surface tessellation.
We combine our caching scheme with SIMD-optimized subdivision
primitive evaluation and fast hierarchy construction over the tessel-
lated surface. This allows us to achieve high ray tracing perfor-
mance in complex scenes, outperforming the state of the art while
requiring only a fraction of the memory. In addition, our method
stays within a fixed memory budget regardless of the tessellation
level, which is essential for many applications such as movie pro-
duction rendering. Beyond the results of this paper, we have inte-
grated our method into Embree, an open source ray tracing frame-
work, thus making interactive ray tracing of subdivision surfaces
publicly available.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: ray tracing, subdivision surfaces, caching

1 Introduction

Subdivision surfaces [Catmull and Clark 1978] have been the stan-
dard modeling primitive in the movie industry for many years
[DeRose et al. 1998], and are gaining more and more traction in
the context of real-time computer graphics [Pixar 2012]. Many ren-
dering systems choose to follow the REYES approach [Cook et al.
1987] and render subdivision surfaces through dense tessellation.
This is a memory-efficient solution, as the finely-tessellated geom-
etry can be discarded immediately after use. For ray tracing, how-
ever, any portion of the scene may be required by any ray. Unfortu-
nately, a complete, dense tessellation requires a significant amount
of memory in order to store all tessellated data during ray traver-
sal. As this data can easily exceed the available memory, multi-
resolution geometry caching (MRGC) [Christensen et al. 2003] has
been used to impose fixed bounds on memory usage. Despite the
large number of polygons required to render a subdivision surface
with adequate smoothness, the initial coarse mesh is relatively com-
pact. This suggests that even somewhat incoherent ray paths access
roughly the same patches, making caching of tessellated patches a
viable option for exploiting spatial and temporal ray coherence (i.e.,
avoiding redundant tessellation).

However, managing a (shared) tessellation cache is challenging, es-
pecially on today’s many-core architectures with dozens of hard-
ware threads per CPU. Efficient synchronization among all threads
is required to ensure that no thread removes cached data still being
accessed by other threads. This continuous locking and unlock-
ing of memory regions significantly reduces performance on many-
core architectures. Distributed caches [Djeu et al. 2007], where
each thread manages its own cache, do not require sophisticated
synchronization when removing data. Unfortunately, they suffer
from data replication, as different threads accessing the same patch
will replicate the corresponding tessellation data in their own local
tessellation caches. This replication severely limits effective cache
sizes and causes significant computational overhead, especially on
architectures with dozens of threads.

In this paper, we tackle the aforementioned problems by introduc-
ing a novel lazy-build evaluation cache specifically designed for ray
tracing subdivision surfaces on many-core architectures. To this

end, we dynamically construct and cache local tessellation hierar-
chies on top of input patch primitives. We efficiently obtain patch
tessellations by combining adaptive subdivision (where needed)
and direct surface evaluation (where possible) using a SIMD-
optimized evaluation. The core of our approach is the fixed sized
lazy-build tessellation cache, which maintains the dynamically-
generated surface points and spatial hierarchies. The cache is
shared among all threads and designed for efficiently managing
memory allocation and deallocation of irregular-sized data, while
maintaining scalability with respect to thread count.

Overall, we achieve interactive frame rates even for complex
scenes, as shown in Figure 1. Compared to previous work, our
approach is over 2.4× faster, while requiring only a fraction of the
memory, as all threads share the lazy-build cache. We believe that
scaling tessellation caches to many-core architectures is a crucial
step towards real-time ray tracing of subdivision surfaces. This be-
comes even more important when models are fully animated.

2 Related Work

For parametric surfaces, various numerical approaches based on
Bézier Clipping [Sederberg and Nishita 1990; Campagna et al.
1997; Efremov et al. 2005; Tejima et al. 2015], Newton Itera-
tion [Toth 1985; Geimer and Abert 2005; Benthin 2006; Abert
et al. 2006] and bounding envelopes [Kobbelt et al. 1998] exist for
computing ray-surface intersections. These direct intersection ap-
proaches require very little or no additional data but are very com-
pute intensive. In addition, special care needs to be taken to handle
numerical instabilities (e.g., tangential rays) and corner cases. A
major drawback of these approaches is that they cannot directly
support displacement mapping, which is a common requirement in
the industry. To this end, parametric patches are typically tessel-
lated into polygonal representations, which can be efficiently inter-
sected using a spatial hierarchy. For ray tracing subdivision sur-
faces, the basic idea of a multi-resolution geometry cache (MRGC)
was first introduced by Christensen et al. [2003]. They combined
adaptive multi-resolution techniques (using ray differentials to de-
termine subdivision levels) and caching to avoid redundant subdivi-
sion and displacement operations. Unlike our solution, Christensen
et al. explicitly targeted offline rendering, thus never considering
efficiency issues when extending the tessellation cache to dozens of
threads in the context of an interactive application.

In the Razor system, Djeu et al. [2007] also use a multi-resolution
geometry cache, and, like our solution, target interactive rendering.
Due to the high synchronization cost in coordinating shared cache
access between different threads, Djeu et al. were the first to pro-
pose that each CPU thread maintains its own cache independently
from all other cores. Unfortunately, a tessellation cache per thread
suffers from redundant computation and data replication, thus lead-
ing to excessive memory consumption on architectures with large
thread counts. A more detailed performance comparison to the Ra-
zor architecture is given in Section 6.3.

Rather than caching, Benthin et al. [2007] rely exclusively on on-
the-fly subdivision and packet amortizations. The use of large pack-
ets amortizes both culling tests and subdivision operations across
all rays in the packet, thus achieving high performance for co-
herent rays and large enough packets. Relying solely on amorti-
zation, however, creates a conflict between efficiency and coher-
ence: larger packets produce better amortization, but only work
for coherent rays; smaller packets work better for less-coherent
rays, but then require frequent re-tessellation, leading to bad per-
formance. For offline rendering, Hanika et al. [2010] proposed a
two-level approach, where rays potentially intersecting the same
patch are queued. When enough rays are queued, the patch is diced

into micropolygons, a hierarchy is built on top, and all queued
rays continue traversal through this hierarchy. The costs of dic-
ing and hierarchy build are amortized over all queued rays. Hou et
al. [2010] propose an algorithm for efficiently ray tracing microp-
olygons which targets high-quality defocus and motion blur. A key
component of their method is a BVH based on 4D hyper-trapezoids
which project into 3D oriented bounding boxes.

Control
Point

Matrix
Header

Control
Point

Matrix
Header

Control
Point

Matrix
Header

Control
Point

Matrix
Header

Figure 2: Each patch consists of a header (64 bytes) and patch
control point data (256 bytes), which are either 16 control points of
a bi-cubic B-Spline patch or 20 control points of a Gregory patch.
All patches are stored in a linear array in memory irrespective of
whether they are based on the coarse input primitives or gener-
ated by feature-adaptive subdivision. Based on the bounds of each
patch, a 4-wide BVH (BVH4) is build over all patches. Each BVH4
leaf points to a single patch.

3 Patch Generation

For ray tracing subdivision surfaces, we dynamically tessellate
Catmull-Clark patch primitives. The tessellation is then used to de-
termine ray-surface intersections (see Section 4). In this section,
we describe how we efficiently evaluate Catmull-Clark patches;
caching the resulting tessellation is explained in Section 5. For
simplicity, we assume that all models are Catmull-Clark subdivi-
sion surfaces [Catmull and Clark 1978]; however, our patch eval-
uation is also compatible with other schemes such as Loop sub-
division [Loop 1987]. In order to efficiently evaluate subdivision
patches, we follow a similar data flow to the feature-adaptive subdi-
vision algorithm in OpenSubdiv [Pixar 2012; Nießner et al. 2012a;
Nießner et al. 2012b], where the input data is given as a coarse
mesh over polygons (typically quad-dominant) with additional data
arrays defining features like tessellation level, edge creases, vertex
creases, and holes.

Based on the input edge data, a half-edge structure is built to effi-
ciently support adjacency queries. These queries are used to first
collect the 1-ring per vertex and thus all 1-rings per initial input
primitive. All 1-rings per input primitive are finally converted to
a set of bi-cubic B-Spline and Gregory patches [Gregory 1974;
Loop et al. 2009] using feature-adaptive subdivision [Nießner et al.
2012a]. To achieve as few patches as possible, we adaptively subdi-
vide the patch only as long as it is not a quad or crease features are
present. Finally, B-Spline patches are used to efficiently cover the
typical case of regular faces, and Gregory patches are used to ap-
proximate patches with irregular vertices. If accuracy of the surface
is a concern, feature-adaptive subdivision could easily be continued
to reduce the size of Gregory patches without any modification to
the rest of our approach.

For each edge of the input mesh, a tessellation level has been set
by the application. Note that our approach allows for arbitrary in-
teger tessellation levels, similar to Djeu et al. [2007]. However, our
implementation could be easily extended to fractional tessellation
following Moreton [2001]. The edge tessellation levels are modi-
fied through the adaptive subdivision process, and the final levels

for the B-Spline/Gregory patches are set accordingly. All edge lev-
els are set before rendering a frame, and remain constant during the
rendering of the current frame.

The set of bi-cubic B-Spline and Gregory patches are the base prim-
itives over which we build a top-level hierarchy. While we build
the top-level hierarchy at the beginning of every frame (as geome-
try is potentially animated), each patch also maintains its own local
BVH. A local BVH is traversed once a ray reaches a leaf of the top-
level BVH. In contrast to the top-level BVH, all local hierarchies
are built on-demand during ray traversal and their data is stored and
managed by the tessellation cache (see Sections 4 and 5). In the
following, we will discuss the memory layout of both original and
adaptively-subdivided patches and how to construct the top-level
bounding volume hierarchy (BVH).

3.1 Patch Data Layout

A single patch (see Figure 2) requires a total of 320 bytes of stor-
age, corresponding to five 64 byte cache lines [Int 2001]. The
first 64 bytes store header information like patch type (bi-cubic B-
Spline/Gregory), the four edge tessellation levels, the total size of
the patch’s vertex grid (when tessellated) plus the size of the local
BVH data, the 2D u,v range, and a cache pointer, which will later
be used to point to the tessellation data in our cache. The next four
cache lines (256 bytes) hold the patch’s 16 control points (4× 4
layout) in AOS (array-of-structure) format (xyzw). The additional
control point data for Gregory patches (4 extra control points) is
stored in the 4th component of the 16 control points. All patches
are stored in a continuous region in memory, irrespective of whether
the patch is based on the coarse input primitives or generated by
feature-adaptive subdivision.

3.2 Patch Bounds and Top-Level Hierarchy

Intersecting a ray with a bi-cubic B-Spline or Gregory patch re-
quires multiple (costly) steps (see Section 4). A tight bounding
box per patch lowers the probability of performing these tests in
the first place, thus significantly impacting performance. To this
end, we temporarily tessellate each patch (based on the edge tes-
sellation levels) and compute tight bounds over the resulting grid
of vertices. This is computationally inexpensive (see Section 4.3)
and straightforward to parallelize across all threads, and provides
tighter bounds than the convex hull approximation given by the
control points of the underlying patch representation. Note that we
only store the spatial bounds and discard the temporarily-generated
vertex positions. Once all patch bounding boxes are computed, a
high-quality SAH-based BVH is build over them. Each BVH leaf
contains a reference to a single patch. In the following, we will
refer to this hierarchy as the top-level BVH.

As rays will not only traverse the top-level BVH, but also a local per
patch BVH (see Section 4), BVH traversal performance is crucial.
To this end, we exploit the Embree [Wald et al. 2014] ray tracing
kernels which support SIMD-optimized wide-BVH traversal. In
our current implementation, we restrict the width of the BVH to 4
(BVH4); however, an extension to wider BVH widths (8 or 16) is
straightforward.

4 Ray Patch Intersection

In order to intersect a ray with a subdivision model, we first tra-
verse the ray through the top-level hierarchy (see Section 3.2). If a
ray reaches a leaf, we need to compute the intersection between the
ray and the associated patch. To this end, we evaluate the patch at a
uniformly-spaced set of 2D domain locations, thus obtaining a reg-

Figure 3: Left: evaluated 5×5 vertex grid of a patch (edge tessel-
lation factor of 4). Cracks are fixed by edge stitching; i.e., some tri-
angles are reduced to lines and ignored during the ray-intersection
test. Right: the 5× 5 grid is subdivided into four 3× 3 sub-grids.
The local patch BVH4 is build over all 3× 3 sub-grids, and each
BVH4 leaf points to a single sub-grid. When a ray reaches a leaf, a
SIMD-intersection test processes 8 triangles in parallel.

ular grid of vertices. If displacements are defined, we apply them
to grid vertices (see Section 4.1). We then construct a local BVH4
over the corresponding tessellation (see Figure 3), enabling fast ray
traversal. Finally, when a ray reaches a leaf of a local BVH4, trian-
gle intersection tests are performed. Note that a leaf refers to mul-
tiple triangles, allowing us to exploit SIMD parallelism for triangle
intersection tests.

4.1 Fast Patch Evaluation and Tessellation

Based on the four edge tessellation levels of a patch, we first de-
termine the sampling rate in the u,v domain of a patch. Thus, we
obtain the grid resolution by taking the maximum level n in the
u-direction and the maximum level m in the v-direction of the pa-
rameter domain. Next, an n×m grid of u,v coordinates in single
precision floating point format is initialized, corresponding to the
u,v positions at which the patch will be evaluated. As the n×m
grid resolution might differ from the four edge tessellation levels, a
crack-fixing step needs to be applied (see Figure 3). To this end, we
apply an edge stitching pass on the u,v positions following Moreton
et al. [2001].

In the final step, we iterate over the grid of u,v positions with
SIMD-width granularity and evaluate the patch in parallel using
SIMD instructions to obtain the vertex grid. The actual vertex grid
is stored as four arrays, where the first three arrays contain the ver-
tex positions in each dimension and the fourth the u,v coordinates
(with respect to the original input primitive) discretized to pairs of
16-bit integer values. Note that a coarse input primitive can be
subdivided into multiple patches, each having their own u,v range.
Each grid vertex therefore needs u,v coordinates with respect to the
original input primitive. A grid vertex requires a total of 16 bytes
(3× 32 bits for x,y,z and 2× 16 bits of u,v). The local patch u,v
positions used for evaluation will be discarded after the vertex grid
has been evaluated.

Supporting displacement mapping in our approach is straightfor-
ward. After evaluating vertex positions, we pass grid vertices, u,v
coordinates, and the evaluated patch normals to a function call-
back which can arbitrarily modify the vertices. Figure 4 shows
an example scene with displacement mapping and texturing. For
computing patch bounds, we either extend the vertex grid bounds
by displacement bounds (if the application has provided them),
or simply apply the displacement shader to the vertex grid before
computing the bounds. Alternatively, one could use a variety of
approximate bounding approaches for displaced bi-cubic patches
[Munkberg et al. 2010; Nießner and Loop 2012].

Figure 4: The Barbarian model (tessellated into 6.6M triangles)
with texturing and displacements, rendered with diffuse path trac-
ing (left), and flat shaded with displacements (right).

4.2 Local Patch BVH4

After the n×m vertex grid of a patch has been generated, we sub-
divide the grid into sub-grids (see Figure 3) and build a BVH4
over these sub-grids using a simple recursive split-in-the-middle ap-
proach. A BVH4 leaf refers to a single sub-grid. A sub-grid size
of 3×3 is preferable for CPUs with 4 or 8-wide SIMD as it allows
for testing the 8 triangles for intersection in parallel. A sub-grid
size of 5× 3, corresponding to 16 triangles, is more suited for 16-
wide SIMD architectures as supported by the Xeon Phi

TM
(hard-

ware specifications are given in Section 6). Once a ray reaches a
leaf of the local patch hierarchy, we load the 3 rows of data out of
the n×m grid, apply shuffle instructions to convert the data to 8
triangles in SOA (structure-of-array) layout, and then perform all
ray-triangle intersection tests in parallel using SIMD instructions.

4.3 Patch Evaluation and BVH4 Build Performance

Throughput performance of vertex grid evaluation and BVH4 con-
struction for varying grids sizes are shown in Table 1 (grid resolu-
tion = edge tessellation level +1). The vertex grid and BVH4 data
require less than 7 KB of data for a resolution smaller than 17×17,
which typically covers the majority of patch grid resolutions during
rendering. For high grid resolutions like 33×33 and 65×65, even
a single Xeon R© processor core is able to achieve a throughput of
10−47 patches per millisecond.

Grid resolution 3×3 5×5 9×9 17×17 33×33 65×65

Xeon patches/ms 1351 1048 350 116 47 10
XeonPhi patches/ms 1000 666 222 62.5 18 4
mem/patch (KB) 0.2 0.38 1.6 6.7 27.2 109
bytes/triangles 96 21.1 16.3 14.8 14.1 13.7

Table 1: Throughput for evaluating a patch vertex grid (x,y,z,u,v),
crack fixing at patch borders, and building a BVH4 over all
sub-grids. Throughput performance is given in ms for a single
Xeon R©/Xeon Phi

TM
core. Combined memory consumption for the

vertex grid and BVH4 data ranges from less than 0.2 KB to 109
KB, depending on the tessellation level which approaches approxi-
mately 14 bytes per triangle at high grid resolutions.

4.4 Conservative Traversal and Triangle Intersection

Visual artifacts caused by rays shooting through shared edges of
neighboring triangles are typically caused by numerical imprecision
during ray traversal and ray-triangle intersection. The probability of
these artifacts increases with more densely-tessellated patches. We
prevent these artifacts by employing a robust triangle intersection
test, which performs 3 edge tests [Davidovič et al. 2012], and a

conservative BVH traversal [Ize 2013]. Note that higher traversal
and intersection costs affect ray tracing performance by 10−15%.
More sophisticated (and costly) approaches [Woop et al. 2013] to
guarantee water-tightness were not necessary.

5 Shared Lazy-Build Cache

Even though patch tessellation and local BVH4 construction is fast
(see Section 4.3), performing them every time a ray intersects a
patch will severely impact performance, as the associated construc-
tion cost is much higher than that of traversing a ray through the lo-
cal BVH4 afterwards. As ray distributions typically exhibit spatial
and temporal coherence, caching previously generated tessellation
and BVH4 data is therefore an efficient approach to save redun-
dant operations. Additionally, the large on-chip hardware caches
on today’s CPUs make geometry caching even more effective for
temporal coherent data accesses.

To this end, we propose a new lazy-build evaluation cache specifi-
cally designed for many-core architectures. Our cache operates as a
globally-shared segmented FIFO (first-in first-out) cache [Cho and
Moakar 2009] that can efficiently store irregular-sized tessellation
and BVH4 data under heavy multi-threaded conditions. As long as
the cache is filling up, the scheme behaves exactly like a lazy hi-
erarchy build [Hunt et al. 2007] with unbounded memory storage.
However, we are able to stay within a fixed memory budget – which
is essential for many applications –, and we provide an efficient so-
lution for scaling up to many compute cores.

5.1 Cache Lookup

Every time a ray reaches a leaf of the top-level BVH4, we check
whether the lazy-build cache already contains the patch tessellation
and the local BVH4 data. Cache lookups can be performed with
hardly any computational overhead, as only a cache pointer in the
patch header needs to be dereferenced. If the corresponding cache
pointer is valid, it refers directly to the lazy-build cache where the
local BVH4 and vertex grid of the patch are stored. If the pointer is
invalid, the patch has not been accessed before and the tessellation
and hierarchy generation needs to be triggered (see Section 4). In
addition to the cache pointer, the patch header stores a time stamp,
indicating when the patch data was generated and cached. A cache
pointer is invalid if the time stamp is too old (see Section 5.2).

On a successful cache lookup, the cache pointer is used to extract
the root node of the patch’s BVH4 and traversal continues. On a
cache miss, the cache pointer is (atomically) set to a special in-
valid state indicating that the patch tessellation and hierarchy build
process is in progress by the given thread. This causes subsequent
threads accessing the same patch to wait until the cache pointer
becomes valid again. The thread performing the tessellation and
hierarchy build now allocates a new memory block from the cache
(to store BVH4/vertex grid data), and starts the tessellation and hi-
erarchy build process. When finished, it sets the cache pointer to
the root of the local BVH4 and the time stamp to the global time
stamp. At this point, the cache pointer has become valid and all
waiting threads are allowed to continue.

5.2 Memory Allocation and Deallocation

Relying on standard system calls for memory allocation and deal-
location (i.e., malloc/free) is suboptimal, as they are costly, have
limited thread scalability, and introduce heap fragmentation. Sup-
porting a hard upper bound in total memory allocation is also dif-
ficult to realize, which is essential for many applications such as
movie production rendering. Our lazy-build cache thus avoids sys-

Patch 0
Data

Patch 2
Data

Patch 3
Data

Patch 3
Data

Patch 0
Data

Patch 2
Data

Patch 1
Data

Patch 1
Data

Patch 3
Data

Patch 4
Data

Patch 4
Data

Segment 1Segment 0 Segment 2 Segment N

Patch 2
Data

Patch 3
Data

(a)

(b)

(c)

Figure 5: (a) The lazy cache is filled with varying-sized data (ver-
tex grid and patch BVH4). The data of the last patch cannot be
inserted as the cache is not large enough. After making sure that no
thread is currently accessing the cache, it is invalidated and the new
patch data is put at the beginning. (b) and (c): the cache is divided
into n segments (n = 2 for (b)), forming a circular buffer. Instead of
invalidating the entire cache, only a single segment is invalidated
at a time to free up allocation space. All previous segments are kept
valid. At the transition point between segments, all threads are tem-
porarily synchronized and blocked from the cache. Invalidating a
single segment corresponds to invalidating 1/n of the cache.

tem calls but uses a fixed-size scratchpad memory. This storage
is pre-allocated at application start-up time, and remains constant
during rendering. In contrast to Djeu et al. [2007], the lazy-build
cache is shared among all CPU threads and uses a simple atomic
counter as a parallel memory allocator. Each thread simply incre-
ments the counter by the number of cache-lines (64 bytes each)
required. Note that requiring only a single atomic increment oper-
ation allows efficient scaling to a large number of threads without
introducing notable synchronization overhead.

When our system runs out of allocation space in the scratchpatch
storage (i.e., the cache is full), we need to deallocate memory in
order to free up space. Our lazy-build cache does not deallocate in-
dividual cache entries, but invalidates entire segments of the cache
(see Figure 5). Instead of invalidating the entire cache and erasing
all cached data, the scratchpad storage is partitioned into n segments
and only a single segment is invalidated.

These segments form a circular buffer, and at any time, only a sin-
gle segment is used for allocating memory. If no allocation space
is left in the current segment, all threads are synchronized (see Sec-
tion 5.2.1) and therefore blocked from accessing cached data. The
next segment is then marked invalid, the atomic allocation counter
is reset, and threads are unblocked (see Figure 5). The segment in-
validation process continues in a round-robin fashion. When tran-
sitioning from segment m to segment m+ 1, the latter is automati-
cally invalidated by incrementing the global time stamp counter g
by 1. Invalidation here means that tessellation and local BVH4 data
stored in this segment has become invalid. Thus, the cache pointer
for the corresponding patches is also invalidated. While performing
a cache lookup, the loaded cache pointer is only valid if the patch
time stamp s fulfills s+(n− 1) ≥ g. Note that all segments in the
cache could be invalidated by adding the number of segments n to
the global time stamp counter g.

Based on the absolute size of the cache, the total number of CPU
threads, and their instantaneous working set during rendering, we
found that dividing the cache into 8 segments on Xeon R© (4 on
Xeon Phi

TM
) provided the best performance. If the absolute size of

the cache is too small (e.g., a few MBs), a larger number of seg-
ments will reduce the size of a single segment to the point where

it cannot serve the allocation requests from all threads at a given
time. In this case, some threads would stall and wait until alloca-
tion space becomes available in the next segment. Comparing the
allocation/deallocation performance against a standard system call-
based approach shows that our scheme achieves a 5− 10× higher
throughput.

5.2.1 Efficient Thread Synchronization

Before a segment is invalidated and its content is overwritten, we
first need to make sure that no other thread is currently accessing
data stored in the segment. To this end, each thread maintains a
local counter which is initially set to 0. Before traversing a local
patch BVH4, the thread atomically increments its local counter, and
checks whether the original value was 0. If the value was 0, the
local BVH4 traversal starts; if not, the thread enters a blocking state
until the counter is reset (by another thread) to 0 again. Once local
BVH4 traversal is finished, the counter is atomically decremented.

This strategy allows a master thread to efficiently block all other
threads from accessing invalid data by first incrementing the other
threads’ local counters and waiting until the counter values become
1. At this point, it is guaranteed that all other threads have fin-
ished local BVH4 traversal or are in a blocking state before local
BVH4 traversal. Now, the master thread can safely reset the al-
location counter to the next segment, increment the global time
stamp counter, and finally invalidate the next segment in order to
free cache storage. Afterwards, it will reset the other threads’ local
counters to zero, and thus release them from their blocking state.
The cost of synchronizing all threads using this scheme is very low
(about 0.01−0.02 ms on a high-end Xeon R© CPU and 0.09−0.12
ms on a Xeon Phi

TM
) and happens only in the transitioning phase

between segments. Note that we need to ensure that only a sin-
gle master thread is responsible for blocking the others threads at a
certain point in time; otherwise a dead-lock situation could occur.

The main advantage of our synchronization scheme is that there is
hardly any synchronization overhead across threads in the common
cases of reading from the lazy-build cache and performing allo-
cation operations. This turns out to perform much faster than a
standard multiple-reader-single-writer locking scheme per patch,
where each request for read access causes an atomic update op-
eration. For instance, if multiple threads access the same patch,
the lock/unlock-related atomic update would cause cache lines to
bounce between involved cores, as write operations require cache
lines to be exclusively in the core’s L1 cache. The cost of bounc-
ing cache lines can affect the overall performance by 5− 10× on
many-core architectures.

6 Results

We evaluate our approach using two different systems with many
threads per CPU to stress our lazy-build cache: 1) a dual-socket
Intel R©Xeon R©-E5-2600 v3, where each CPU has 18 cores (2
threads per core, 8-wide SIMD), with a total amount of 72 threads;
2) a 7120 Intel R©Xeon Phi

TM
co-processor with 61 cores and a to-

tal of 244 threads (4 threads per core, 16-wide SIMD).

We have integrated our patch generation and evaluation, as well
as lazy-build cache, into the Embree ray tracing framework [Wald
et al. 2014]. All performance numbers include patch normal evalua-
tion, sampling, and shading. For diffuse path tracing, the maximum
recursion depth for the path tracer has been set to 8, which results on
average in 7−12 secondary rays per primary ray. In the following,
we evaluate the efficiency of our lazy-build cache by comparing the
performance and memory consumption against an unbounded and
pre-tessellated version using varying cache sizes.

cache size % 100 80 60 40 20
cache size (MB) 150 120 90 60 30

total cache invalidation
cache misses 282K 654K 1284K 2546K 5346K
cache hit rate % 99.2 98.2 96.6 93.6 87.4
rel. perf % 100 98.2 88 79 57
patch rebuilds 1.0 2.3 4.8 9.1 18.3

8 segments, 1 segment gets invalidated
cache misses 282K 468K 908K 1860K 4003K
cache hit rate % 99.2 98.6 97.4 94.6 89.4
rel. perf % 100 98.9 96.5 91 72
patch rebuilds 1.0 1.7 2.9 6.4 14.0
ratio # cache misses 1.0× 0.74× 0.70× 0.73× 0.74×
ratio # patch rebuilds 1.0× 0.73× 0.60× 0.70× 0.76×

multi-segment vs. per-thread cache
rel. perf 7.1× 10.5× 16.1× 26.4× 32.3×

Table 2: Lazy-build cache efficiency statistics for diffuse path trac-
ing in the complex Sponza-Barbarians scene. We report numbers for
the baseline cache size, and relative performance using smaller-
sized caches. The baseline of 150MB is set such that the cache
is sufficiently large to cache all dynamically-generated patch data
without needing to deallocate memory blocks. Reducing the cache
size to 40% of the initial size: a complete cache invalidation scheme
achieves only 79% of the original performance; in contrast, our
multi-segment-based invalidation scheme is able to maintain 91%
of the original performance. Overall, the multi-segment cache re-
duces the number of misses by 0.70− 0.74×, and the number of
rebuilds per accessed patch by 0.60− 0.76×. Compared to a per-
thread cache, our multi-segment cache achieves 7 − 32× higher
performance, depending on the cache size.

6.1 Caching Efficiency and Absolute Performance

As cache misses invoke patch tessellation and BVH4 rebuilding,
the ray tracing performance directly correlates with cache hits (see
Section 4). Our cache hit rate for diffuse path tracing (see Table 2)
is over ≥ 99% when the size of the lazy cache is set to cover the
entire working set during rendering. In this case, no cache capacity
misses occur and no deallocation needs to be performed; in other
words, the patch tessellation and BVH4s for each accessed patch
need only be generated once.

By reducing the cache to 40% of the initial size and invalidating the
entire cache when no space is left for allocation, the relative perfor-
mance drops to 79%. In this case, the patch tessellation and BVH4
rebuilds already account for over 35% of the total compute time. In
contrast, our multi-segment invalidation scheme is able to reduce
the number of misses by 0.70− 0.74×, thus maintaining 91% of
the performance relative to the full-sized cache. At this cache-hit
rate, patch tessellation and BVH4 builds account for only 10% of
the total ray tracing cost, compared to 60% traversal/intersection
and 30% shading/sampling/rest costs. Hence, our caching scheme
shifts the bottleneck to traversal/intersection computations.

We have also tried using more than eight segments, and reducing
the size of the lazy-build cache further. However, this turns out
to be counter-productive in relation to the absolute cache size. In
this case, the size of a single segment is not enough to cover all in-
stantaneous thread allocation requests. Thus, threads run idle while
waiting until the next segment becomes available for allocation.

Table 2 also shows the performance of our multi-segment cache
in comparison to a per-thread caching approach (with full cache
invalidation). The size of a per-thread cache is set to the size of the
multi-segment cache divided by the number of threads. The small
caches cannot efficiently handle the large working set, resulting in
frequent cache invalidations (only 50−67% average cache hit rate)
which leads to a significantly lower performance.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

re
la

ti
ve

 p
er

fo
rm

an
ce

#cores

relative scalability in #cores

Sponza-Barbarians (Xeon) Sponza-Barbarians (Xeon Phi)
Courtyard (Xeon) Courtyard (Xeon Phi)

Figure 6: Relative scalability in the number of CPU cores for the
Courtyard and the Sponza-Barbarians scene with diffuse path trac-
ing and a 16/60MB lazy-build cache. Our multi-segment-based
lazy-build cache with fast memory allocation/deallocation allows
for reaching almost linear scalability.

Figure 6 shows an evaluation of the scalability of our method in the
number of cores. On both processors, the Xeon R© and Xeon Phi

TM
,

the performance scales almost linearly with the used core count.
This suggests that there is hardly any overhead of the synchroniza-
tion phases of our multi-segment invalidation scheme.

Table 3 shows the absolute rendering performance for our lazy-
build cache compared to a static and highly-optimized pre-
tessellated version – we provide numbers for both 100% and 40%
of the initial cache size. Even though the pre-tessellated variant is
1.4−1.7× faster for the Xeon R© and 1.8−2.0× for Xeon Phi

TM
, it

requires significantly more memory (6−7×). The lower rendering
performance is caused by patch tessellation and BVH4 build costs,
but most importantly by the BVH4 quality: while a high-quality
SAH-BVH4 is built over all triangles, the local BVH4s are built by
a simple split-in-the-middle heuristic.

unbounded bounded pre-tessellation
Xeon XeonPhi Xeon XeonPhi Xeon XeonPhi

Sponza-Barbarians
cache size (MB) 150 150 60 60 - -
tri/patch data (MB) 128 128 128 128 1100 1100
perf (M rays/s) 40 20 36 19 67 34

Courtyard
cache size (MB) 40 40 16 16 - -
tri/patch data (MB) 20 20 20 20 216 216
perf (M rays/s) 90 56 89 53 123 85

Table 3: Absolute path tracing performance (million rays/s) and
memory consumption (MB) for our lazy-cache versus both a lazy-
cache with unbounded memory and a reference high-quality BVH4
over pre-tessellated geometry. The static pre-tessellated version is
1.4− 1.7× faster on the Xeon R© (1.5− 2.0× on Xeon Phi

TM
) but

also requires 6−7× more memory than the combined size of patch
data and lazy-build cache storage.

6.2 Adaptive Tessellation Per Frame

Adaptive tessellation requires the recalculation of all edge tessella-
tion levels every frame. Thus, half-edge structures, patch headers,
and patch bounds need to be updated and reevaluated at the be-
ginning of each frame. Then, the top-level BVH4 over all patches
needs to be rebuilt and the lazy cache is completely invalidated. For
medium complex scenes like the Courtyard (66K patches) scene or
the Barbarian model (50K patches), this takes less than 10 ms on

0

10

20

30

40

50

60

70

80

90

100

Primary Rays Diffuse Path Tracing

Shading + Sampling

Edge Level Update +
Top-Level BVH4 Build

Patch Tessellation +
Patch BVH4 Build

BVH4 Traversal + Ray-
Triangles Intersection

Figure 7: The graph shows a breakdown of the cost for ray trac-
ing the adaptively-tessellated Barbarian model. Per frame costs in-
clude: recalculating edge tessellation levels, top-level BVH4 re-
build, local patch tessellation and BVH4 build, BVH4 traversal,
and ray-triangle intersection tests. The Barbarian model (50K
coarse input primitives) is ray traced with fully-adaptive tessella-
tion per frame (1024×1024) at over 80M rays/s (primary rays only,
Xeon R©). For diffused path tracing, we achieve over 75M rays/s.

the Xeon R©/ Xeon Phi
TM

. Figure 7 shows a cost breakdown of
the different stages per frame. For primary rays only, recalculating
the edge levels plus top-level BVH4 rebuild takes 20% of the to-
tal frame time, while the local patch tessellation/BVH4 build takes
40%; everything is rebuilt from scratch per frame. For diffuse path
tracing, more patch data can be reused from the lazy-build cache.
This increases the relative traversal and triangle intersection costs
from 40% to 75% out of the total compute time.

6.3 Comparison to Previous Approaches

The closest method to our approach is the Razor architecture by
Djeu et al. [2007]. They use a per-thread tessellation caching
scheme and invalidate the entire cache when no more allocation
space per thread is available. However, the Razor architecture
followed different design goals (per-ray tessellation level, coarser
geometry for secondary rays, decoupled shading etc.), thus mak-
ing a direct comparison quite challenging. In order to provide the
fairest possible comparison, we rendered the Courtyard scene with
closely-matching view, lighting, tessellation, and rays-per-pixel set-
tings running on an older Xeon R© system similar to that used by
Djeu et al. (8 cores, 4-wide SIMD only). For these settings, Djeu
et al. report a ray tracing performance of 7.5M rays/s on eight
cores, which translates to 0.93M rays/s per core. Our approach
achieves more than 2.4M rays/s per core (including top-level BVH
build time), uses only 16 MB for our lazy-build cache, and roughly
20 MB for all patch data (after feature-adaptive subdivision). Even
including all texture and original input scene data, this adds up to
only a fraction of the 710 MB reported by Djeu et al..

6.4 Limitations

One of the limitations of our approach is the choice of the absolute
size of a cache segment. On one hand, it must not be too small with
respect to the number of CPU threads to provide for a good cache
hit ratio. On the other hand, a small-sized segment will not be able
to cover all instantaneous thread requests, causing threads to run
idle until new allocation space is available. Luckily, it is relatively
easy to adjust the cache size depending on the ray distributions and
tessellation levels in a scene environment. In offline production
rendering, it is also common to restrict the tessellation cache size
to a fraction of the total system memory (e.g., 1GB) regardless of

scene complexity or tessellation levels. We currently follow this
approach and only allocate address space for the lazy-build cache.
In the case of underutilization, no physical memory is wasted.

Currently, if multiple threads access the same patch at the same
time, only a single thread will perform the tessellation and BVH4
build process. This somewhat limits scalability for high tessella-
tion levels and simultaneous thread accesses in scenes with a small
number of patches. One solution could be to allow waiting threads
to join the tessellation/build process. Additionally, in the case of
low tessellation levels, the size of the patch array with 320 bytes/-
patch will consume most of the memory, thus resulting in an infe-
rior memory consumption compared to pre-tessellation. By caching
the patch’s 4x4 control point matrix (256 bytes) in addition to the
patch’s tessellation data instead of storing the control point matrix
for all patches, the up-front memory consumption would be reduced
from 320 to 64 bytes per patch.

Auxiliary vertex data (e.g., texture coordinates) sharing the same
connectivity as vertex position data can simply be evaluated and
cached in the same fashion as tessellation data, with only a mod-
erate increase in cache footprint. However, supporting different
connectivity for vertex data is more complicated, as the adaptive
subdivision process would potentially generate a very different set
of patches for the auxiliary data. The mapping from the first to the
second set of patches could be realized by binary search based on
the u,v coordinates.

Currently, when we generate patches, we resolve all semi-sharp
crease tags by subdivision (see Section 3). However, a better option
would be to directly evaluate regular patches with creases [Nießner
et al. 2012b]. We will include this optimization in the future.

7 Conclusion and Future Work

We have presented a method to efficiently evaluate and cache patch
data for ray tracing (displaced) subdivision surfaces on modern
many-core architectures. As our cache has a fixed size and is shared
among all threads, it is more memory- and time-efficient than ap-
proaches based on per-thread tessellation caches. Due to our fast
allocation and deallocation operations for irregular-sized tessella-
tion and hierarchy data, our method scales well to a high number of
threads without introducing any significant synchronization costs.
The SIMD-optimized patch evaluation and the local BVH4 rebuild
provides interactive adaptive tessellation per frame, thus allowing
for fully dynamic and animated scene content.

Our method can also easily be combined with other ray tracing
techniques. We have implemented our method in Embree1, an
open source ray tracing framework, and made it publicly avail-
able. While our method is implemented in a CPU-based ray tracing
framework, the concepts apply equally well to GPUs. In fact, since
GPUs are typically composed of more cores than CPUs, many-core
scalability becomes even more relevant. Hence, we could very well
see our approach being combined with GPU ray tracing techniques
such as the method proposed by Aila and Laine [2009].

Acknowledgments

We would like to thank James Jeffers and Eric Tabellion for their
valuable feedback and guidance. The Barbarian model is courtesy
of Autodesk (Jesse Sandifer is the original artist), and the Atrium
Sponza Palace scene is courtesy of Crytek. The character models
in the Courtyard scene are copyright by Digital Extreme. We also
thank Angela Dai for the video voice over.

1https://embree.github.io/

References

ABERT, O., GEIMER, M., AND MÜLLER, S. 2006. Direct and
Fast Ray Tracing of NURBS Surfaces. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing, 161–168.

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of
ray traversal on gpus. In Proceedings of the conference on high
performance graphics 2009, ACM, 145–149.

BENTHIN, C., BOULOS, S., LACEWELL, J. D., AND WALD, I.
2007. Packet-based Ray Tracing of Catmull-Clark Subdivision
Surfaces. Tech. Rep. UUSCI-2007-011.

BENTHIN, C. 2006. Realtime Ray Tracing on current CPU Archi-
tectures. PhD thesis, Saarland University.

CAMPAGNA, S., SLUSALLEK, P., AND SEIDEL, H.-P. 1997. Ray
Tracing of Parametric Surfaces. The Visual Computer 13, 6,
265–282.

CATMULL, E., AND CLARK, J. 1978. Recursively generated b-
spline surfaces on arbitrary topological meshes. Computer-aided
design 10, 6, 350–355.

CHO, S., AND MOAKAR, L. A. 2009. Augmented fifo cache re-
placement policies for low-power embedded processors. Journal
of Circuits, Systems and Computers 18, 06, 1081–1092.

CHRISTENSEN, P. H., LAUR, D. M., FONG, J., WOOTEN, W. L.,
AND BATALI, D. 2003. Ray Differentials and Multiresolu-
tion Geometry Caching for Distribution Ray Tracing in Com-
plex Scenes. In Computer Graphics Forum (Eurographics 2003
Conference Proceedings), Blackwell Publishers, 543–552.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
REYES Image Rendering Architecture. Computer Graphics
(Proceedings of ACM SIGGRAPH 1987), 95–102.

DAVIDOVIČ, T., ENGELHARDT, T., GEORGIEV, I., SLUSALLEK,
P., AND DACHSBACHER, C. 2012. 3d rasterization: A bridge
between rasterization and ray casting. In Proceedings of the 2012
Graphics Interace Conference, Canadian Information Process-
ing Society, Toronto, Ont., Canada, Canada, GI ’12, 201–208.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision sur-
faces in character animation. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques,
ACM, 85–94.

DJEU, P., HUNT, W., WANG, R., ELHASSAN, I., STOLL, G.,
AND MARK, W. R. 2007. Razor: An Architecture for Dynamic
Multiresolution Ray Tracing. Tech. Rep. UTCS TR-07-52, Uni-
versity of Texas at Austin Dept. of Comp. Sciences, Jan. Condi-
tionally accepted to ACM Transactions on Graphics.

EFREMOV, A., HAVRAN, V., AND SEIDEL, H.-P. 2005. Robust
and Numerically Stable Bézier Clipping Method for Ray Tracing
NURBS Surfaces. In SCCG’05 Proceedings.

GEIMER, M., AND ABERT, O. 2005. Interactive ray tracing of
trimmed bicubic bézier surfaces without triangulation. In WSCG
(Full Papers), 71–78.

GREGORY, J. A. 1974. Smooth interpolation without twist con-
straints. Brunel University Mathematics Technical Papers col-
lection;.

HANIKA, J., KELLER, A., AND LENSCH, H. 2010. Two-level
Ray Tracing with Reordering for Highly Complex Scenes. In
Proceedings of Graphics Interface 2010, 145–152.

HOU, Q., QIN, H., LI, W., GUO, B., AND ZHOU, K. 2010.
Micropolygon ray tracing with defocus and motion blur. ACM
Trans. Graph. 29, 4 (July), 64:1–64:10.

HUNT, W., MARK, W. R., AND FUSSELL, D. 2007. Fast
and lazy build of acceleration structures from scene hierar-
chies. In IEEE/EG Symposium on Interactive Ray Tracing 2007,
IEEE/EG, 47–54.

INTEL CORP. 2001. IA-32 Intel Architecture Optimization – Refer-
ence Manual.

IZE, T. 2013. Robust BVH ray traversal. Journal of Computer
Graphics Techniques (JCGT) 2, 2 (July), 12–27.

KOBBELT, L., DAUBERT, K., AND SEIDEL, H.-P. 1998. Ray
Tracing of Subdivision Surfaces. Proceedings of the 9th Euro-
graphics Workshop on Rendering, 69–80.

LOOP, C., SCHAEFER, S., NI, T., AND CASTAÑO, I. 2009. Ap-
proximating subdivision surfaces with gregory patches for hard-
ware tessellation. ACM, vol. 28.

LOOP, C. 1987. Smooth Subdivision Surfaces Based On Triangles.
Master’s thesis, University of Utah.

MORETON, H. 2001. Watertight tessellation using forward
differencing. In HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
ACM, New York, NY, USA, 25–32.

MUNKBERG, J., HASSELGREN, J., TOTH, R., AND AKENINE-
MÖLLER, T. 2010. Efficient bounding of displaced bézier
patches. In Proceedings of the Conference on High Performance
Graphics, Eurographics Association, 153–162.

NIESSNER, M., AND LOOP, C. 2012. Patch-based occlusion
culling for hardware tessellation. In Computer Graphics Inter-
national, vol. 2.

NIESSNER, M., LOOP, C., MEYER, M., AND DEROSE, T. 2012.
Feature-adaptive gpu rendering of catmull-clark subdivision sur-
faces. ACM Transactions on Graphics (TOG) 31, 1, 6.

NIESSNER, M., LOOP, C. T., AND GREINER, G. 2012. Efficient
evaluation of semi-smooth creases in catmull-clark subdivision
surfaces. In Eurographics (Short Papers), 41–44.

PIXAR, 2012. OpenSubdiv. http://graphics.pixar.com/opensubdiv/.

SEDERBERG, T. W., AND NISHITA, T. 1990. Curve Intersection
using Bezier Clipping. Computer-Aided Design 22, 9, 538–549.

TEJIMA, T., FUJITA, M., AND MATSUOKA, T. 2015. Direct ray
tracing of full-featured subdivision surfaces with bezier clipping.
Journal of Computer Graphics Techniques (JCGT) 4, 1 (March),
69–83.

TOTH, D. L. 1985. On Ray Tracing Parametric Surfaces. In
SIGGRAPH ’85: Proceedings of the 12th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 171–179.

WALD, I., WOOP, S., BENTHIN, C., JOHNSON, G. S., AND
ERNST, M. 2014. Embree: a kernel framework for efficient
cpu ray tracing. ACM Transactions on Graphics (TOG) 33, 4,
143.

WOOP, S., BENTHIN, C., AND WALD, I. 2013. Watertight ray/-
triangle intersection. Journal of Computer Graphics Techniques
(JCGT) 2, 65–82.

