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Figure 1: Scenes with multi-segment motion blur from Blender Institute Open Movies rendered using our proposed STBVH
acceleration structure. Compared to building separate BVHs for each global time segment, the STBVH reduces memory con-
sumption for motion blurred geometry by 1.2–2.6×, while the rendering performance is only up to 4% lower for these scenes.

ABSTRACT
Wepresent the STBVH, a new approach for renderingmulti-segment

motion blur using a bounding volume hierarchy (BVH) that stores

both spatial linearly interpolated bounds and temporal bounds. The

approach is designed for different number of time steps per mesh

or object. While separating the individual meshes using standard

partitioning techniques, it performs temporal splits for locations

with large or curved motion inside the meshes. Our approach uses

a modified motion blur surface area heuristic (MBSAH) that cal-

culates probabilities in the presence of spatial-temporal bounds

and works on linear motion segments of primitives rather than on

full motion curves. We show that our approach is able to handle

challenging scenes with varying degrees of motion blur per mesh,

using significantly less memory and having competitive render-

ing performance compared to building separate linear motion blur

BVHs per global time segment.
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1 INTRODUCTION
The preferred method for rendering movies today is Monte Carlo

path tracing [Christensen and Jarosz 2016], which relies on ray

tracing to directly sample the rendering equation to compute photo-

realistic images. Tracing rays is typically the most time consuming

part of this process. For ray tracing animated content, the rendering

of motion blur effects is essential for achieving high visual quality,

but it is also very challenging in both rendering time and memory

consumption. Monte Carlo path tracing handles motion blur by

stochastically integrating over the camera’s shutter time; i.e., any

ray being traced has a random “time” associated with it. This in

turn complicates the underlying ray tracing kernel as it has to find

the proper ray-primitive intersection for a given time stamp. For

objects that are moving quickly the respective primitives’ locations

can vary significantly over the time the shutter is open, making it

harder to find the correct ray-primitive intersection for a specific

point in time.

Supporting only linear motion blur, where each primitive is

specified through a start- and end-position and the exact position for

a specific time is obtained through linear interpolation, simplifies

the problem. In fact, many systems already have support for linear

motion blur, however, for very quickly moving objects that do not

move in a straight trajectory (anything that is rotating quickly, such

as a rotor, waving arms, a carousel, etc.), simple linear interpolation

does not provide an adequate approximation (see Figure 2). These

scenarios require multi-segment motion blur, where each primitive

(or vertex) follows along a path of N linear line segments, or along

a spline-based curve defined by multiple control points.

In this paper we present the Spatial-Temporal Bounding Volume
Hierarchy (STBVH), which efficiently supports multi-segment mo-

tion blur, while minimizing memory usage and offering similar

rendering performance to simple linear motion blur BVHs.

https://doi.org/10.1145/3105762.3105779
https://doi.org/10.1145/3105762.3105779
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(a) Linear motion blur (b) Multi-segment motion blur

Figure 2: A closeup of theTrain scene showing quickly rotat-
ing wheels rendered with (a) linear motion blur with 2 time
steps and (b) multi-segment motion blur with 17 time steps.
Linear motion blur is not capable of capturing the complex
non-linear motion of the wheels and thus causes incorrect
blurring.

2 PREVIOUS WORK
In the past, researchers investigated different approaches for han-

dling motion blur in ray tracing-based rendering. Linear motion

blur simplifies the problem to just two time steps with linear inter-

polation of vertices inbetween. The naive approach of just using a

standard BVH build over the moving primitives suffers from perfor-

mance issues due to overlapping bounds in particular if the motion

gets larger than the primitive size. This issue can be solved by us-

ing linearly interpolated bounds [Christensen et al. 2006; Hanika

et al. 2010; Hou et al. 2010] which can tighly bound linear motion,

however, these linear bounds cannot handle fast curved motion

efficiently as described above.

In the case of multi-segment piecewise linear motion, a straight-

forward extension of the linearly interpolated approach is to use

multiple linear motion BVHs for a sufficiently large global number

of time segments, which together cover all motion in the scene.

Ideally, the global number of time segments should be equal to the

least common multiple of the numbers of time segments per object.

However, if the time segments are not restricted to powers of two

(which is common), this would be impractical, so using the maximal

number of time segments (or even less) is a more reasonable choice,

at the cost of lower tree quality. Unfortunately, this approach has

twomajor issues. First, it requiresN independent linear motion blur

BVHs, which is quite expensive in terms of memory consumption.

This is in particular problematic if different objects have different

numbers of time steps, as one would have to build potentially as

many BVHs as the maximal number of time segments. Second,

since each time segment essentially has its own BVH, ray packet

approaches, which trace small packets with multiple rays simul-

taneously, are problematic as different rays might have different

time values assigned. In this case, the rays will quickly diverge into

different BVHs, lowering the efficiency of these packet techniques.

Instead of building separate BVHs over sufficiently many time

segments, an alternative would be to use a single, shared BVH topol-

ogy for all time segments, storing multiple bounding volumes per

node [Grünschloß et al. 2011]. In this approach each node stores

the maximal number of bounding volumes with respect to its chil-

dren (even if the amount of motion is low), which again results in

increased memory consumption. Also, this approach is typically

limited to power-of-two time segments, as this simplifies the imple-

mentation. Furthermore, a single topology cannot be optimal for

each time step. For example, if two primitives are close together in

one time step, putting them into a leaf node seems optimal, while

the same primitives may be far apart in a second time step where

this leaf would have a large surface area and cause low rendering

performance.

A different approach relies on extending spatial data structures

to a 4D structure, with time being the 4
th

dimension. An exten-

sion of k-d trees to 4D was introduced by Olsson [Olsson 2007] by

adding temporal splits. The advantage of this approach is that it

can use temporal splits only where necessary. However, k-d trees

cannot efficiently handle linear motion in the first place, therefore

requiring many temporal splits and thus reducing the efficiency

of the data structure. Similarly, BVHs have been extended to a 4D

data structure [Glassner 1988] storing bounds using slabs in 12

space-time directions. In contrast, our approach supports tighter

4D bounding by using linearly interpolated bounds, which are ori-

ented along the direction of motion, and not along fixed directions.

Ray classification has also been extended to 4D, but its memory

requirements are too large for practical purposes [Quail 1996].

Rather than rendering one frame over the entire shutter time, the

renderer could render separate frames for sufficiently many time

segments, and average/blend those partial frames, while within a

single frame it could rely on linear motion blur only. However, this

approach introduces lots of complexity into the renderer itself, and

further limits additional techniques, such as post-frame filtering,

interactive editing, and interactive previews. It also requires the

renderer to re-build a different BVH for each of the N frames, and

to re-compute all other per-frame data for each such time region

(which is often unnecessary).

Re-building the BVH from scratch for each frame can be avoided

by building only a single BVH (e.g. for the first frame) and then

refitting it for each frame [Wald et al. 2007]. However, this often

breaks down for complex deformations and topology changes. The

quality of the per-frame BVHs can be improved by using the T-SAH

[Bittner and Meister 2015], which is an extension of the traditional

SAH to sequences of animated frames. First, a BVH is built for one

frame, and then it is iteratively optimized for the entire sequence

using the T-SAH, which is a weighted average of the SAH costs of

the individual frames. However, refitting the BVH for each frame

is still necessary. Further, if one object of the scene requires many

time steps, the entire scene needs to be processed for a large number

of time segments multiple times.

3 THE SPATIAL-TEMPORAL BVH (STBVH)
Our approach is based on a BVH that introduces temporal bounds

and a build algorithm that can perform temporal splits to simplify

the motion of a subtree.

The data structure encodes the motion for the normalized shutter

time [0,1] and we only accept ray timestamps in this normalized

range.

3.1 Data Structure Layout
The fundamental data structure to our approach is an N -ary bound-

ing volume hierarchy (BVH) where each node stores bounds and

pointers for up to N children. Our BVH has three node types:

(1) Spatial Nodes store spatial linear bounds for each child.
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(a) Example 1: Object partitioning
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(b) Example 1: Temporal partitioning

t

x

t

x

t

x

t

x

(c) Example 2: Object partitioning
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(d) Example 2: Temporal partitioning

Figure 3: Object partitioning and temporal partitioning for some example scenes of moving 1D lines. The diagrams show the
time axis to the right and spatial axis upwards. The trapezoid shapes correspond to the linear motion of the 1D lines moving
from one time step to the next and are counted by the MBSAH heuristic through the |X |s factor. The area of the drawn linear
bounds correspond to the SA′(X ) · T (X ) factor of the heuristic in the 1D case. The first example shows two separated objects
with different number of time steps that move downwards. The best object split (a) produces tight linear bounds while the
best temporal split (b) produces loose linear bounds. In this example, our heuristic would choose the object split. The second
example shows some curved motion of an object. The best object split (c) produces large linear bounds with overlaps, while
the best temporal split (d) produces tight linear bounds and thus would get chosen by our heuristic.

(2) Spatial-Temporal Nodes store spatial linear bounds and
temporal bounds for each child.

(3) Leaf Nodes store a list of primitives.

Linear bounds refer to a pair of axis aligned bounding boxes

(AABBs) whose linear interpolation to time t bound the geometry

at that time. A spatial-temporal node stores temporal bounds T ⊂
[0,1] and spatial bounds (B0,B1), while Bt = (1 − t ) · B0 + t · B1
bounds the geometry represented by the child for each time t ∈ T .
Note that we directly use the global time t to interpolate the bounds
and do not normalize the time to the time range T . This way we

can always directly use the time stored inside the ray to interpolate

linear bounds stored in the BVH, no matter which time range is

active in the current subtree.

We choose to use linear bounds in our data structure as they

have already proven to handle linear motion blur well [Hou et al.

2010]. They in particular allow us to bound the typical case of linear

motion very tightly, but can also be used to bound more general

motion.

We added spatial-temporal nodes to the data structure (in con-

trast to temporal-only nodes), as this allows us to perform object

and temporal partitioning mixed arbitrarily during the BVH build

process without loosing culling efficiency. A subtree of the BVH

represents only the geometry for the time range specified inside the

spatial-temporal node. This allows the data structure to shrink the

time range in areas where it is difficult to bound motion, e.g. in case

of curved motion. Temporal bounds of neighboring subtrees may

overlap in our data structure, however, our BVH build algorithm

currently does not produce temporal overlaps. When going down

the BVH the temporal bounds of a lower level are always a subset

of the temporal bounds on a higher level, thus temporal bounds

always shrink.

As an optimization we kept spatial-only nodes in our data struc-

ture, because for large parts of the BVH no temporal partitioning

is performed and temporal bounds are not required (e.g., if motion

in the current time range is small or very linear).

Leaf nodes store primitives that can be intersected for any time

in the current time range. These primitives are typically stored with

respect to piecewise linear motion. While the data structure can

also handle non-equidistant piecewise linear motion or even higher

order motion, we will assume equidistant piecewise motion from

now on. Thus while each primitive can have a different number of

time segments, we assume that the time segments of a primitive

are of equal length.

We use an N -ary BVH because this type of data structure allows

for efficiently exploiting SIMD instructions of modern CPUs to

achieve high performance [Wald et al. 2014]. As branching factor

N we either use 4 or 8 depending on the available SIMD width of

the underlying architecture.

3.2 Motion Blur SAH (MBSAH)
Standard top-down BVH construction techniques use the local

greedy surface area heuristic (SAH) [Goldsmith and Salmon 1987;

Wald and Havran 2006] to decide whether and how to partition a

set of primitives. This heuristic uses probabilities of hitting sets of

primitives to estimate the cost of leaf creation or performing a split

the following way:

Cleaf (X ) = |X | ·CI

Csplit (X ,X0,X1) = CT + P (X0 |X ) ·Cleaf (X0) + P (X1 |X ) ·Cleaf (X1)
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Here X denotes a set of primitives and the leaf creation cost

function Cleaf estimates the cost of sequentially intersecting all

primitives, where |X | is the number of primitives in X , and CI is a
constant estimating the intersection cost of one primitive. In the

split cost function Csplit , the term P (Y |X ) denotes the conditional
probability of a ray that hits the bounding box of X also hits the

bounding box of a subset Y of the primitives, and CT estimates the

cost of one traversal step.

The probability P (Y |X ) is calculated using the ratio of the surface
area of the axis aligned bounds of Y and the surface area of the

enclosing bounding box X :

P (Y |X ) =
SA(Y )

SA(X )

where SA(X ) is the surface area of the bounding box of X .

For our motion blur surface area heuristic (MBSAH) we attach a

time range to each primitive and count the total number |X |s of
active primitive segments of the primitives. A primitive segment

represents the shape of the linear motion of a primitive from one

time step to the next, and it is considered active in a time range if

that range overlaps its own time range.

As we use spatial-temporal bounds we have to adjust the prob-

ability of hitting these bounds. First a ray may also miss spatial-

temporal bounds if its time does not fall into the time range of these

bounds. Second, as we use linear bounds during construction and

in our data structure, we need to approximate the time-averaged

surface area of these linear bounds. Thus as probability the MBSAH

uses:

P (Y |X ) =
SA′(Y )

SA′(X )
·
T (Y )

T (X )

Here SA′(X ) is the surface area of the center-time bounds of

the linear bounds of X , the merged time range of X is used to

calculate these center-time bounds, and T (X ) is the size of this

merged time range. Note that using the average surface area ob-

served by a random ray would be more accurate, but this surface

area approximation showed no practical decrease in BVH quality.

After multiplying the cost functions by SA′(X ) ·T (X ) to avoid

expensive divisions (we can do this because we do not need the

absolute cost values), our final MBSAH looks like the following:

Ĉleaf (X ) = SA′(X ) ·T (X ) · |X |s ·CI

Ĉsplit (X ,X0,X1) = SA′(X ) ·T (X ) ·CT + Ĉleaf (X0) + Ĉleaf (X1)

As we calculate the surface area of the linear bounds, this heuris-

tic is a better estimate of the traversal cost, compared to previous

approaches that calculate SAH costs based on axis aligned bounds

to build linear motion BVHs.

Also, as we count active primitive segments, this SAH calcula-

tion makes meshes with a large number of active time segments

more expensive than a mesh with a smaller number of active time

segments. It further makes splitting at times that fall inside a time

segment more expensive, as this primitive segment now counts

on both sides of the split. For this reason, local minima for tem-

poral splits are typically found at discrete locations between time

segments.

The heuristic can be used to evaluate temporal splits that split
the merged time ranges of the primitives into two halves (and

partitioning primitives while properly adjusting their time range),

or to object splits that partition the primitives using some spatial

criteria but keep the time ranges unchanged. Some examples of

the heuristic applied to object and temporal splits are illustrated in

Figure 3.

A challenging case for a motion blur SAH is a geometry where

neither object nor temporal splits can reduce the spatial bounding

box (e.g., small triangles uniformly distributed along a circle and

rotating around the circle twice). In such a scenario temporal splits

have to get chosen to shrink the time range until the primitive

motion is sufficiently small to perform object splits. Our heuristic

robustly chooses temporal splits in this scenario. The motion blur

SAH uses the probability of hitting the spatial-temporal bounds,

and these spatial-temporal bounds always shrink when performing

a temporal split (as the time range gets split). Thus temporal splits

are always good in shrinking the spatial-temporal bounds, and will

always get selected when an object split produces bad SAH cost.

Note that our decision to count segments rather than primitives

plays an important role here, because the set of active primitives

is typically not partitioned well using a temporal split. The reason

for this is that primitives are most of the time active over the entire

shutter time.

A second case to consider is of spatially separated motion blurred

objects (see Figure 3) . For such a case we intend to first spatially

separate the objects using object splits, and then use temporal splits

inside the objects to simplify the motion. The object splits typically

reduce the surface area sufficiently (e.g., cut a cubic bounding of area

1 into two bounds with area
2

3
), while temporal splits may partition

time segments well and cut the temporal bounds into two halves

(e.g., cut unit temporal bounds of size 1 into two temporal bounds

of size
1

2
). This calculation shows that temporal splits are favored

in this situation (essentially due to the area of the splitting plane).

To counteract this effect we penalize temporal splits slightly by a

factor λ = 1.25 when selecting between object and temporal splits.

This makes both splits about equally expensive in this situation.

Using this factor does not change rendering performance much,

but helps reducing BVH size, as the temporal splits tend to replicate

primitive segments (that fall onto the splitting time) on both sides

of the split. Note that the temporal split will also get penalized if

it cannot partition the time segments of the primitives well (e.g.,

if there are many objects with only a single time segment), which

further increases the likelyhood that object splits are performed in

this situation.

3.3 Construction
We perform a top-down construction of our data structure using

the modified MBSAH. Algorithm 1 shows the pseudocode of the re-

cursive construction algorithm which builds the subtree for a set of

build primitives X for the time rangeT , and returns the constructed
node N and linear bounds B. During construction we evaluate the

SAH heuristic to either partition the set of build primitives X or

split the current time range T .
A build primitive is a data structure that represents the entire

motion path of a single primitive. It references multiple primitive

segments for one primitive, which together define the entire anima-

tion during the shutter time. A build primitive is active for a time
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Algorithm 1 STBVH construction. The BuildNode function re-

cursively builds the subtree for a set of build primitives X for time

range T , and returns the constructed node N and linear bounds B.

1: function BuildNode(X ,T )
2: cleaf ← CalculateLeafCost(X ,T )
3: cobjectSplit ← FindObjectSplit(X ,T )
4: ctemporalSplit ← ∞

5: if cobjectSplit ≥ θ · cleaf then
6: if |T | ≥ MinTimeSegmentSize(X ) then
7: ctemporalSplit ← FindTemporalSplit(X ,T )
8: end if
9: end if
10: cbest ← min(cleaf ,cobjectSplit ,λ · ctemporalSplit )
11: if cbest = cleaf then
12: N ← LeafNode(X )
13: return (N ,CalculateLinearBounds(X ,T ))
14: else if cbest = cobjectSplit then
15: (X0,X1) ← PerformObjectSplit(X ,T )
16: (N0,B0) ← BuildNode(X0,T )
17: (N1,B1) ← BuildNode(X1,T )
18: N ← SpatialNode(N0,B0,N1,B1,T )
19: return (N ,MergeLinearBounds(B0,B1))
20: else
21: (X0,T0,X1,T1) ← PerformTemporalSplit(X ,T )
22: (N0,B0) ← BuildNode(X0,T0)
23: (N1,B1) ← BuildNode(X1,T1)
24: N ← SpatialTemporalNode(N0,B0,T0,N1,B1,T1)
25: return (N ,CalculateLinearBounds(X ,T ))
26: end if
27: end function

range if any of its primitive segments is active for that time range.

The resolution of the motion may be different for each primitive,

thus each build primitive may refer to a different number of primi-

tive segments. Primitives may also start and end to live during the

shutter time, which just shrinks the time range the corresponding

build primitives are considered to be active in.

Each build primitive stores a primitive ID, local linear bounds

for the current time range, the number of primitive segments active

during that time range, and the total number of primitive segments

of that primitive. Note that we do not have to store the current

time range as this is known implicitly during construction and that

the linear bounds stored are local, thus they store the bounds at

the beginning and the end of the time range. These local linear

bounds can be merged tightly, e.g. for the SAH binning phase, by

just merging the bounds for the begin and end times.

The builder first tests whether a standard object split gives low
SAH cost (lines 2–5). Therefore we bin the build primitives using

the center of their linear bounds interpolated to the current center

time, and evaluate the SAH for all three spatial dimensions. This can

be done efficiently as the linear bounds and the number of active

primitive segments are directly stored inside the build primitives X .

We consider the object split successful if cobjectSplit < θ ·cleaf , where
cobjectSplit and cleaf are the object split and leaf costs, respectively.

We use θ = 0.5, which essentially means that the object split should

at least cut surface areas in half.

Otherwise, we test a temporal split of the current time range T
intoT0 andT1, but only ifT is not already smaller than the minimal

time segment size over all current build primitives (lines 6–8). For

splitting time we essentially choose the center time, and align it

to a discrete time segment boundary of the build primitive that

has the most time segments. After this time has been calculated,

we iterate over all current build primitives and calculate the SAH

for the selected split. This task is quite expensive, as we need to

recalculate linear bounds and number of overlapping time segments

for the time ranges T0 and T1 for each build primitive.

Next, we select the best of cleaf , cobjectSplit , and λ · ctemporalSplit
and perform the corresponding split or create a leaf (lines 10–26).

λ essentially makes temporal splits slightly more expensive and

we choose λ = 1.25 in our implementation as described above.

Object splits can partition the build primitive array in-place, while

temporal splits typically output two build primitive arrays of the

same size (the size can also shrink as primitives may be inactive for

some time range). We re-use previously allocated memory to store

the first array, and allocate new memory for the second array.

The just described algorithm builds a binary BVH. To fill N -wide

nodes of an N -ary BVH, we iteratively split the child having the

largest estimated surface area until the N -wide node becomes full.

The builder returns the local linear bounds of the generated

node from the recursion. This way, spatial nodes can just use these

bounds to create the final node, and return the merged bounds

(lines 18–19). When creating the node, the local linear bounds have

to be converted to global linear bounds to be stored inside the BVH

nodes. This can easily be achieved by interpolating the local linear

bounds to the global start time 0 and end time 1.

Spatial-temporal nodes also use the bounds returned by the

recursive construction to create the node (line 24). Merging these

spatial-temporal bounds of different time ranges is possible, but

t

x

Figure 4: This figure illustrates how we calculate linear
bounds for the motion of a primitive. In this example, a 1D
line segment is moving in time. We calculate initial upper
bounds by using the upper bounds at the start and end times
as initial upper bounds (dashed green line) and move these
bound upwards until they bound the primitive at all time
steps (green line). Similarly, we adjust initial lower bounds
(dashed red line) downwards to calculate the lower bounds
(red line).
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Llama Barbershop Train

Turtle Barbarian Turtle Barbarian Translate Turtle Barbarian Rotate 0.5× Turtle Barbarian Rotate 2× Turtle Barbarian Crowd

Figure 5: Test scenes with varying degrees of motion blur used for the performance measurements. See Table 1 for primitive
and time step counts.

produces quite coarse bounds. To obtain tight linear bounds for

the spatial-temporal nodes, we therefore iterate over all current

primitives, recalculate their linear bounds for the node’s time range,

and merge these linear bounds (line 25).

We calculate linear bounds for a set of primitives as illustrated

in Figure 4. To calculate linear upper bounds for the x dimension,

we choose the upper bounds of x for the first and last time step as

initial linear bounds. Interpolating these two values to intermediate

times yields a line that typically is no upper bound for each time

step yet. To fix this we just add some constant (the maximal error)

to the linear bounds which moves the line upwards such that it

is an upper bound for all time steps. Other dimensions and lower

bounds are calculated similarly.

3.4 Ray Traversal
The ray traversal through the STBVH works similar to a standard

BVH traversal. Ray-bounds intersection tests are performed re-

cursively to determine which children are intersected, and these

children are processed in an intersection-distance-based order. Once

a leaf is reached, the geometry contained in the leaf is intersected.

Intersecting the linear bounding boxes stored in the nodes works

by linearly interpolating them to the time t stored in the ray. If the

nodes also store time intervals, we additionally check if the ray

falls into the time interval, to decide whether we need to traverse

the subtree at all.

Some care has to be taken if the time of a ray falls exactly onto a

boundary of a time range, to avoid entering two time ranges. To

solve this issue, time ranges [t0,t1[ are always treated to be open

to the right and we increase the end time 1 by an epsilon when

stored inside the BVH to properly handle a ray with a time of 1.

Scene Primitive Groups
Time Steps Primitives

Llama

3 7.0M

9 1.7M

Barbershop

3 1.4M

5 2.8M

9 3.9M

Train

3 0.3M

17 2.0M

Turtle Barbarian 15 0.1M

Turtle Barbarian Translate 6 0.1M

Turtle Barbarian Rotate 0.5× 9 0.1M

Turtle Barbarian Rotate 2× 33 0.1M

Turtle Barbarian Crowd

2 7.5M

6 2.8M

15 0.1M

Table 1: The test scenes consist of primitives (triangles and
line segments) thatmay have different number of time steps.
This table groups the primitives by the numbers of time
steps they have, and lists for each group the number of prim-
itives that are stored at the respective time resolution.

4 RESULTS
We implemented our approach in the Embree Ray Tracing Kernels

framework [Wald et al. 2014], and compared it against the existing

multi-segmentmotion blur implementation in Embree, which builds

independent linear motion blur BVHs for a global number of time

segments. The number of BVHs is equal to the maximal number

of time segments of the objects in the scene. This enables very

high ray traversal performance, but can result in excessive memory
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Scene Size (MB) SAH Cost Build Speed (Mprim/s) Render Speed (Mray/s)

BVH STBVH Ratio BVH STBVH Ratio BVH STBVH Ratio BVH STBVH Ratio

Llama 2631.5 1019.5 0.39× 20.2 21.3 1.05× 5.3 7.41 1.40× 17.0 16.6 0.98×

Barbershop 2775.4 1873.2 0.67× 46.8 48.3 1.03× 5.47 3.74 0.68× 25.3 25.6 1.01×

Train 1788.4 1529.7 0.86× 2 2.1 1.05× 2.83 1.73 0.61× 43.3 41.4 0.96×

Turtle Barbarian 68.7 68 0.99× 8.5 9.1 1.07× 2.17 1.45 0.67× 62.0 57.2 0.92×

Turtle Barbarian Translate 24.8 13.3 0.54× 11 11.7 1.06× 6.13 5.32 0.87× 79.0 79.6 1.01×

Turtle Barbarian Rotate 0.5× 39.1 39.6 1.01× 8.6 6.9 0.80× 4.05 2.6 0.64× 121.6 115.2 0.95×

Turtle Barbarian Rotate 2× 156.4 158.4 1.01× 5.9 7 1.19× 0.99 0.73 0.74× 117.4 106.4 0.91×

Turtle Barbarian Crowd 6898.9 786.1 0.11× 11 11.1 1.01× 2.75 11.45 4.16× 40.1 49.5 1.24×

Table 2: Total BVH size (including BVHs for triangles and line segments) in MB, total SAH cost, build performance in million
primitives per second (Mprim/s), and rendering performance using diffuse path tracing in million rays per second (Mray/s)
for separate BVHs for the maximal number of time segments (BVH) and our STBVH. Only primitives with motion blur were
included in the scenes. The rendering resolutions were 1920×1080 and 1440×1440 pixels.

usage if there is high variation in the number of time steps per

object. Both approaches use indexed primitives, so the primitive

vertices themselves are stored only once and are shared across the

per-segment BVHs.

Embree currently builds separate BVHs for motion blurred and

static (non-motion blurred) geometry, and for each primitive type.

We do the same for the STBVH, however, this is not a limitation of

our approach, but of the Embree framework itself. To isolate the

performance of motion blur, we disabled all non-motion blurred

geometry for our measurements.

Our tests scenes include both real-world and synthetic scenes

(see Figure 5). Llama and Train are scenes from the Caminandes 3
animated movie, and Barbershop is a scene from the Agent 327 ani-

mated movie. The Llama and Barbershop scenes consist of triangles
and line segments (for hair), and the Train scene has only triangles.

The objects in all these scenes have different number of time steps

and all static geometry has been removed. Turtle Barbarian is a

triangle mesh with a complex, non-linear animation, Turtle Barbar-
ian Translate is the same model but with simple linear translation

motion and no deformation, Turtle Barbarian Rotate 0.5× and 2×

are versions with half- and double rotation of the model, and Turtle
Barbarian Crowd contains many animated, non-instanced copies of

the model with varying number of time steps.

Themeasurementswere performed on an Intel
®
Xeon

®
E5-2699 v4

workstation (Broadwell microarchitecture, 22 cores, 2.2 GHz) with

32 GB RAM. The code was compiled with Intel
®
C++ Compiler

17.0.2, and the benchmark was run under Linux.

Table 2 shows that for many scenes the STBVH significantly

reduces memory usage compared to simple per-segment BVHs.

The rendering performance is typically roughly the same or only

slightly lower, but in certain extreme cases (like Turtle Barbarian
Crowd) it can be even higher. The amount of possible memory

reduction depends on whether the objects have different number

of time steps and on the complexity of the motion as well.

For the three movie scenes, Llama, Barbershop, and Train, which
have mixed number of time steps, the memory usage is reduced

by 1.17–2.58×. For the Turtle Barbarian scene and its two rotated

versions, where all primitives have the same number of time steps

and the motion is non-linear, the memory usage is about the same.

Thus, in such cases the MBSAH has no benefits compared to per-

segment BVHs, but importantly, it does not produce bigger trees

either. Turtle Barbarian Translate also has uniform time resolution

but the motion is linear, which is detected by the MBSAH, reducing

the memory usage by almost 2×. The biggest improvements were

measured for the Turtle Barbarian Crowd scene, where most objects

have few time steps but one object (the main character) has much

more time steps than the others. This object significantly increases

the number of per-segment BVHs, which makes that approach very

inefficient. The STBVH handles this case well, requiring 9× less

memory.

Despite the significant BVH size reductions, the total SAH cost

of the STBVH is worse by only a few percent for most scenes. Using

a simple single-ray diffuse path tracer with minimal shading, the

rendering performance of the STBVH vs. per-segment BVHs ranges

between 0.91–1.24×. Therefore, our approach achieves, on average,

roughly the same or only slightly lower ray traversal performance,

while significantly reducing memory usage.

The main drawback of our method is that temporal partitioning

has a significant computational and memory overhead, which also

makes object partitioning more expensive because of the additional

bookkeeping throughout the entire build process. This overhead

causes a decrease of build performance by up to 1.64×. However,

if the MBSAH reduces the number of nodes and thus partitioning

Scene Peak Build Memory (MB)

BVH STBVH Ratio

Llama 2974.6 1847.0 0.62×

Barbershop 3106.7 3614.3 1.16×

Train 1953.4 2358.5 1.21×

Turtle Barbarian 86.9 143.6 1.65×

Turtle Barbarian Translate 32.7 24.5 0.75×

Turtle Barbarian Rotate 0.5× 46.3 91.2 1.97×

Turtle Barbarian Rotate 2× 187.5 321.3 1.71×

Turtle Barbarian Crowd 7525.9 1559.2 0.21×

Table 3: The peak memory consumption during BVH build
for separate BVHs for the maximal number of time seg-
ments (BVH) and our STBVH.
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steps by a large enough amount, building the STBVH can be actually

faster. This can be observed for the Llama and Turtle Barbarian
Crowd scenes, where our building algorithm is faster by 1.4–4.16×.

Table 3 shows the peak memory consumption during BVH build.

As temporal splits double the build primitive array size, the peak

memory consumption of the STBVH build can be higher than build-

ing multiple BVHs per time segment sequentially. For example, the

rotation variants of Turtle Barbarian have about 80% higher peak

memory consumption, but for our three movie scenes peak memory

consumption is either much lower (Llama) or only slightly higher

(Barbershop and Train). Whether we use more memory during

STBVH build depends on the locations where the MBSAH chooses

to perform temporal splits. Temporal splits performed at the top

of the tree cause a higher overhead, and temporal splits performed

more down in the tree cause a lower overhead. Thus when many

objects can get separated spatially by the MBSAH before doing tem-

poral splits (such as for the Turtle Barbarian Crowd scene) memory

overhead can be very low. Note that we need to double the build

primitive array during STBVH build only because we process both

subtrees after a temporal split in parallel. One could get around

this issue by sequentializing the BVH build at this point. While

this sequentialization can easily get integrated into a binary BVH

builder, it turned out to be difficult to integrate into our builder for

4 and 8-wide BVHs.

5 CONCLUSION AND FUTUREWORK
We presented the STBVH, a new approach for rendering multi-

segment motion blur using a bounding volume hierarchy that stores

spatial linear bounds and temporal bounds. We demonstrated that

it performs competitively to building multiple, independent linear

motion BVHs for a global number of time segments, but needs

significantly less memory as it can spatially separate objects before

introducing temporal separation, and it increases temporal resolu-

tion only where it is required. Thus the STBVH can store complex

scenes with objects having widely varying time resolutions in an

efficient, compact form, without sacrificing rendering performance.

We believe that the combination of spatial linear bounds, which

tightly bound the typical case of linear motion, with temporal

bounds, which allows the data structure to reduce the complexity of

non-linear animations, makes this data structure a great candidate

for adoption in movie production. Our algorithm can particularly

play out its strengths for renderings where high-quality motion

blur is desired for the main characters or objects, and few time steps

are sufficient for other parts of the scene.

As future work, we would like to extend the STBVH and MB-

SAH to handle both animated and static geometries at the same

time, so the entire scene could be stored in a single, unified BVH

to improve ray traversal performance. We further would like to

evaluate extensions to the MBSAH to reduce the data structure size

even further, which could make our λ factor unnecessary.

The source code of our implementation of the STBVH approach

can be found in the Embree Ray Tracing Kernels 2.16.0 [Woop et al.

2017].
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