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Abstract

Compressed wide bounding volume hierarchies can significantly improve the performance of incoherent ray traversal, through a
smaller working set of inner nodes and therefore a higher cache hit rate. While inner nodes in the hierarchy can be compressed,
the size of the working set for a full traversal stack remains a significant overhead. In this paper we introduce an algorithm
for wide bounding volume hierarchy (BVH) traversal that uses a short stack of just a few entries. This stack can be fully stored
in scarce on-chip memory, which is especially important for GPUs and dedicated ray tracing hardware implementations. Our
approach in particular generalizes the restart trail algorithm for binary BVHs to BVHs of arbitrary widths. Applying our
algorithm to wide BVHs, we demonstrate that the number of traversal steps with just five stack entries is close to that of a full
traversal stack. We also propose an extension to efficiently cull leaf nodes when a closer intersection has been found, which
reduces ray primitive intersections by up to 14%.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

The advent of GPUs with fixed function acceleration for BVH
traversal [KMSB18] has enabled a significant increase in ray trac-
ing performance, driving the recent adoption of real time ray
tracing in games. However, as the computational overhead of
ray traversal is reduced with fixed function implementations, ray
throughput is eventually bound by other constraints, such as on-
chip storage and memory bandwidth.

For this reason, compressed wide BVHs [WWB∗14, YKL17]
make a compelling choice for fixed function traversal [VKJT16],
with compressed inner nodes resulting in improved cache hit rates
and higher ray throughput. Moreover, the nodes in a wide BVH
can be compressed individually, unlike incremental compression
schemes for binary BVHs [Kee14, VAMS16]. Wide BVHs also re-
sult in shallower trees that can be traversed with lower latency.

Besides inner node fetches, the memory accesses for ray traver-
sal also include reads for the leaf geometry as well as reads
and writes to the traversal stack. In this paper we focus on the
traversal stack, which has a significant storage and bandwidth
cost [AK10, ÁS14, YKL17]. Our first contribution is a traversal al-
gorithm for wide BVHs that performs efficiently with a short stack
that can be fully maintained in dedicated on-chip storage.

Our algorithm is a generalization of the binary restart trail ap-
proach of Laine [Lai10] to wide BVHs. Similar to the binary restart
trail, in the event of a short stack under-run we restart traversal from
the root node, which introduces an overhead of additional traversal

steps. We evaluate our algorithm with different path traced scenes
and demonstrate that restart overhead is at most 10% with a short
stack of just five stack entries, while requiring significantly less
memory than a full stack.

Our second contribution is a mechanism that leverages our gen-
eralized restart trail to cull leaf node entries on the stack for a
closest-hit search. By culling stack entries, we skip expensive prim-
itive intersection tests if a closer intersection has been previously
found. Evaluating different scenes, we demonstrate that this tech-
nique can reduce the number of expensive ray primitive intersection
tests by up to 14%.

2. Related Work

There are several techniques for BVH traversal that store addi-
tional information in the BVH node to traverse up the tree or to
a sibling node, thereby avoiding a traversal stack. For example,
Smits [Smi98] stores skip pointers that reference the next node to
traverse if the current node is not intersected. However, this ap-
proach enforces a pre-defined traversal order which adversely im-
pacts traversal performance. Hapala et al. [HDW∗11] instead store
a pointer to the parent node, which enables backtracking of traver-
sal and selecting a dynamic traversal order based on the ray direc-
tion and the axis of partitioning at each BVH level.

Barringer et al. [BAM13] introduced stackless traversal algo-
rithms for both implicit and sparse BVHs. For sparse BVHs which
are more memory efficient for unbalanced trees, they use parent
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pointers to backtrack, similar to Hapala et al. [HDW∗11] but tra-
verse child nodes in a front to back order. Afra et al. [ÁS14] ex-
tend the backtracking approach to wide BVHs using a bitmask to
mark child nodes that can be skipped. They traverse the closest
child node first but do not guarantee front to back ordering for
the remaining children. While backtracking techniques eliminate
the traversal stack they also introduce redundant node fetches and
therefore additional latency and bandwidth.

Binder at. al. [BK16] avoid redundant node fetches using a per-
fect hashing scheme to backtrack in constant time. However, the
hash lookups require additional memory accesses, which they re-
duce by storing references to the uncle and grand uncle in each
BVH node.

Our traversal algorithm on the other hand, is closely related to
the restart trail approach of Laine [Lai10], which we generalize to
wide BVHs. Similar to Laine, we support a short stack of a few en-
tries which can eliminate most of the redundant node fetches. Our
approach does not require additional pointers in the BVH node or
hash lookups for backtracking which leads to a simpler implemen-
tation and a more compact node layout.

Algorithm 1 BVH-N Traversal
1: trail← (0,0,0, ...)
2: level← 0
3: node← root
4: shortstack← empty
5: while exit 6= true do
6: if node is internal node then
7: k← trail[level]
8: H← list of child nodes that intersect the ray
9: S← sort H by increasing hit distance

10: if k = N then
11: Q← remove all but last entry in S
12: else
13: Q← remove the first k entries in S
14: end if
15: if |Q| = 0 then
16: exit = Pop(trail,level)
17: else
18: node← first entry in Q
19: remove the first entry from Q
20: if |Q| = 0 then
21: trail[level]← N
22: else
23: mark last entry in Q as the last child
24: PushBackToFront(Q)
25: end if
26: level← level +1
27: end if
28: else
29: IntersectLeaf()
30: exit = Pop(trail,level)
31: end if
32: end while

3. Algorithm

We generalize the binary restart trail of Laine [Lai10] to N-wide
BVHs using an array of counters, one for each BVH level. Each
counter trail[i], ranges between 0 and N−1 and indicates the num-
ber of children at level i that have already been processed. These
counters allow traversal to restart from the root node by skipping
already processed subtrees. As a special case, if the currently pro-
cessed subtree is the last one at the current level, the corresponding
counter is set to N, indicating that there are no more entries on the
stack for that particular level. By skipping these levels in the restart
trail we can determine the level of the topmost stack entry at any
given time, as described in Section 3.1.

Algorithm 1 describes our traversal technique for N-wide BVHs.
The restart trail is initialized to zeros (no subtree gets skipped) and
traversal starts from the root node at level = 0 (line 1). For ev-
ery internal N-wide node, we compute intersections between the N
child bounding boxes and the ray to find a list H of child nodes that
the ray intersects (line 8). H is then sorted based on increasing hit
distance to obtain a sorted list S.

If traversal restarts from the root node, one or more child nodes
in S may have been previously traversed, which is indicated by the
count value k at the current level. Therefore, we remove the first
k nodes from S (line 13) resulting in a list Q of valid nodes for
traversal. As described earlier, if the value of k equals N, then the
current subtree is the last subtree to be traversed, in which case we
remove all child nodes in S, except the last one (line 23).

If Q is empty, traversal continues with the next node popped from
the traversal stack (line 15). Otherwise, traversal proceeds to the
next level with the first entry in Q (closest remaining child) and
the remaining entries of Q, if any, are pushed on the stack in back
to front order (line 24). If the closest child is the last child at this
level, no entries are pushed onto the stack, and we set the restart
trail counter at the current level to N (line 21). We reserve one ad-
ditional bit per stack entry to mark the last node in Q, which corre-
sponds to the last child to be traversed at the current level (line 11).

While searching for the closest hit, the current hit is updated ev-
ery time a ray intersects a leaf node (line 29). This culls subsequent
child node intersections at a distance greater than the current hit
distance, reducing the number of traversal steps. Therefore, when
an internal node is re-visited after a restart, some of its children that
previously intersected the ray may be culled. Traversing the child
nodes in a front to back order not only leads to better performance,
but also ensures that the nodes that get culled are at the end of the
traversal order. This guarantees that the count value in the restart
trail still refers to the same child or can be used to determine that
the child got culled. Front to back ordering is not strictly required
for an any-hit search, since traversal is terminated on the first leaf
intersection.

3.1. Stack

Similar to the approach of Laine [Lai10], the restart trail can be
accompanied by a short stack that retains the top few stack entries.
When one or more entries get evicted from the bottom of the short
stack, they are processed later by restarting traversal from the root
node.
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Figure 1: Example BVH-4 traversal with a short stack, showing the sorted children Q and the restart trail count at each level. (i) The count
at level 1 is set to 4, as there are no entries pushed onto the stack at this level. (ii) Processing node I yields no hit children. Therefore, node
J is popped from the stack, incrementing the count at level 2. (iii) Processing node J yields no hit children. Therefore, node K (the last node
corresponding to level 2), is popped from the stack and the counter is set to 3. (iv) Processing node K yields no hit children. The following
pop operation skips levels 1 and 2 (gray) as they indicate the last child was already traverseds and node B (level 0) is popped from the stack.

A pop operation on the stack is described in Algorithm 2. First,
the BVH level (parentLevel) corresponding to the parent of the top-
most stack entry is computed by scanning the restart trail upwards
from the current level (Algorithm 3). During this scan, levels with
a value N are skipped since they have no child nodes to process.

If all scanned levels have value N, the stack is empty and traver-
sal is complete (line 4). Otherwise the counter at parentLevel is
incremented to indicate that the next child node is being traversed
(line 6) and all counters below parentLevel are cleared to 0.

If the short stack is not empty, traversal continues with its top-
most entry. If this entry is marked as the last child, the counter
at parentLevel is set to N, indicating that there are no more child
nodes to be processed at this level (line 13). The stack is then
popped and the current level is updated to parentLevel + 1. If the
short stack is empty, traversal restarts from the root node, by setting
the level to 0 and the node to the root node (line 9). Figure 1 shows
an example traversal for a 4-wide BVH.

When we store the value N into the restart trail to indicate that
we enter the last child, we no longer know the index of that last
child. It is important that from now on the last hit child never
changes for that parent node, otherwise we might later enter a dif-
ferent child (which has suddenly become last). However, a found
hit may cause a child that was last to get culled, changing the last
child. Under some assumptions this situation cannot happen: When
we traverse down the BVH we may mark a child last, but we di-
rectly enter it. If geometry inside that child is properly bounded by
the child’s bounding box, no hit that culls that child can get found
when traversing that child. Similarly, when we pop a child C from
the short stack that is marked last, this child may no longer be last as
a closer hit may have been found while it was pushed. This means
that we mark that child last on the restart trail, and if we would
now trigger a restart we would enter the wrong last child (as C is
no longer last). However, a restart cannot get triggered as the child
C is either a leaf node whose intersection will trigger a pop, or it is
an internal node. If the bounds of the children of the internal node
C are properly contained inside the bounds of C itself, then no child
of C can get hit as C itself is not hit, thus again a pop is triggered.

3.2. Stack Culling

Nodes on the stack can be culled by additionally storing the node
hit distance for each stack entry [WWB∗14,FLP∗17]. When a node
is popped from the stack, if its hit distance is greater than the cur-
rent hit distance (clipped ray length), it can be culled as it cannot
contribute to a closer hit. Although this approach can improve per-
formance by reducing the number of traversal steps and primitive
intersections, it approximately doubles the required stack storage,
which can be prohibitive for GPUs and custom hardware imple-
mentations where on-chip storage is limited.

We propose an alternative approach for stack culling that lever-
ages our short stack traversal algorithm to achieve a reduction in ex-
pensive ray primitive intersections with a relatively small increase
in traversal steps. If more than two child nodes intersect a ray and
if any of these child nodes is a leaf, we push the parent node on the
stack instead of the children and continue traversal with the clos-
est child. Later, when the parent node is popped from the stack it
is re-intersected, potentially culling several child nodes that have a
hit distance greater than the current hit distance.

Our stack culling approach requires one additional bit per stack
entry to mark parent nodes. When a node popped from the stack
is marked as a parent, the current depth is set to the depth of the
parent node instead of its children (line 17). Note that previously
traversed children are marked by the restart trail and therefore will
not get re-traversed.

4. Results

Our traversal algorithm is a good fit for hardware implementations
where the short stack can be stored locally in registers and the stack
operations can be efficiently implemented in hardware. We evaluate
a functional model of such a hardware implementation and measure
the number of traversal steps and ray primitive intersection tests
which are key parameters that impact hardware cost.

We use a compressed 6-wide BVH for our analysis, since we
can store information for up to six child nodes in 64 bytes, which
is a typical cache line size on many compute architectures. For
constructing the BVH we use the Embree builders [WWB∗14]
which we modify for generating 6-wide BVH nodes. We do not
enable additional optimizations such as spatial splits. The BVH is

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



K. Vaidyanathan & S. Woop & C. Benthin / EG Wide BVH Traversal with a Short Stack

BMW (792K/396K) VILLA (5.03M/2.52M) CLASSROOM (104K/52K) CROWN (3.54M/1.77M) SANMIGUEL(10.3M/6M)BATHROOM (592K/308K)

Figure 2: Six example scenes used in our evaluation and their primitive counts (triangles/quads), rendered with three-bounce path tracing.

Full Stack Stack 5 Stack 5 + culling
(136 bytes) (44 bytes) (44 bytes)

Scene Closest Hit Any Hit Closest Hit Any Hit Closest Hit
#trav #quad #trav #quad #trav #quad #trav #quad #trav #quad

Bathroom 11.312 2.604 11.596 3.037 11.51(1.02×) 2.6 (1×) 11.65 (1×) 3.04 (1×) 11.59 (1.02×) 2.54 (0.97×)
Crown 18.373 5.323 14.429 4.248 20.3(1.1×) 5.31 (1×) 15.22 (1.05×) 4.25 (1×) 20.45 (1.11×) 5.2 (0.98×)
SanMiguel 30.788 8.291 7.443 2.207 33.7(1.09×) 7.96 (0.96×) 7.64 (1.03×) 2.21 (1×) 34.28 (1.11×) 7.73 (0.93×)
Villa 16.984 3.377 8.005 1.624 17.32(1.02×) 3.37 (1×) 8.03 (1×) 1.62 (1×) 17.55 (1.03×) 3.04 (0.9×)
Classroom 14.467 3.01 8.786 1.698 14.68(1.01×) 2.86 (0.95×) 8.81 (1×) 1.7 (1×) 15.43 (1.07×) 2.6 (0.86×)
BMW 8.044 3.07 4.718 2.258 8.13(1.01×) 2.97 (0.97×) 4.75 (1.01×) 2.26 (1×) 8.71 (1.08×) 2.91 (0.95×)

Table 1: Comparison of the number of traversal steps (#trav) and quad intersections (#quad) per ray for path traced scenes traversed with
a compressed 6-wide BVH. Compared to using a full stack, our short stack introduces a traversal step overhead of just 1-10% for closest-hit
queries and 0-5% for any-hit queries, with approximately the same number of quad intersections. Applying our stack culling approach, the
traversal overhead for closest-hit rays increases slighly but the reduction in quad intersections becomes more significant (2-14%). Our short
stack also requires ∼ 3× less memory than a full stack.

Algorithm 2 : Stack Pop
1: procedure POP(trail, level)
2: parentLevel = FindNextParentLevel(trail,level)
3: if parentLevel < 0 then
4: return true
5: end if
6: trail[parentLevel]← trail[parentLevel]+1
7: reset trail to 0 for levels parentLevel +1 to MaxLevel
8: if short stack is empty then
9: node← root

10: level← 0
11: else
12: node = PopShortStack()
13: if node is tagged as last child then
14: trail[parentLevel]← N
15: end if
16: if node is tagged as parent node then
17: level← parentLevel
18: else
19: level← parentLevel +1
20: end if
21: end if
22: return false
23: end procedure

compressed using 8-bit quantized bounding planes, similar to Yli-
tie et al. [YKL17]. We observe that a 6-wide BVH typically reduces
the number of traversal steps per ray by 20-40% compared to a 4-
wide BVH and only adds 10-15% more steps than an 8-wide BVH.

Instead of using triangles as the base primitive type, we employ
a simple compression scheme for geometry, merging two triangles

Algorithm 3 : Finding the parent level for the topmost stack entry
1: procedure FINDNEXTPARENTLEVEL(trail, level)
2: for i← (level−1)...0 do
3: if trail[i] 6= N then
4: return i
5: end if
6: end for
7: return -1
8: end procedure

that share an edge into a quad (triangle-pair). For typical scenes,
most triangles get paired into quads (see Figure 2). This reduces
the number of primitives by approximately half, resulting in signif-
icantly faster BVH construction. Moreover, all the data for a quad
including the four vertex positions, the mesh index and per-triangle
information such as the triangle indices and vertex order can be
stored in a single 64 byte cache line. This also leads to a more effi-
cient hardware implementation as a triangle-pair can be tested with
a single cache line fetch.

For our evaluation, we render six example scenes (see Figure 2)
with three-bounce path tracing in pbrt [PH17] and process the rays
in our functional model. The ray distribution contains incoherent
rays corresponding to closest-hit and any-hit ray queries. Figure 3
shows the average number of traversal steps per ray with our traver-
sal algorithm and a different short stack sizes. The overhead in
traversal steps with five stack entries is about 1-10% for closest-
hit queries and just 0-5% for any-hit queries (see Table 1), coming
close to the efficiency of a full stack.

With a short stack of five entries, we store the root node (64 bits),
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current node (32 bits), restart trail (3 × 32 bits), current depth (5
bits) and the short stack entries (5× 32 bits), requiring less than 44
bytes of storage. Assuming a maximum tree depth of 32, a full stack
on the other hand requires 136 bytes of storage, including 64 bits
for the root node and 32 × 32 bits for the stack entries. Therefore,
our approach consumes approximately 3× less memory, compared
to a full stack.

It is interesting to note that in some cases, the number of quad
intersections with the short stack is sightly lower than the full stack,
even though the leaf nodes are traversed in the same order. This can
be attributed to traversal restarts which results in some nodes being
re-tested and culled if a closer primitive hit is found in between.
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Figure 3: The number of traversal steps per ray, averaged over
any-hit and closest-hit ray queries with different short stack sizes
and with a full stack. The overhead in traversal steps with a single
short stack entry is as high as 90%, a stack size of four brings the
overhead close to 16% and with five entries, it is less than 10%.

We also analyze our explicit stack culling extension in the last
two columns of Table 1. Stack culling reduces the number of ray
quad intersection tests by 2-14% while increasing traversal steps
by 1-7%. With hardware based traversal implementations, the cost
of a ray primitive intersection test can be significantly higher than
the cost of ray box tests for an inner node [Kee14]. Therefore, stack
culling achieves a good trade-off with a slight increase in the num-
ber of traversal steps for a more significant reduction in ray primi-
tive intersection tests.

5. Conclusion and Future Work

We have proposed a generalization of binary BVH traversal with a
short stack to BVHs with an arbitrary width. Our algorithm does
not require additional data in the BVH nodes or separate structures
in memory to backtrack traversal. Compared to a full stack, our
algorithm requires 3× less stack memory and only increases the
number of traversal steps by a small percentage. We also introduce
an extension of our traversal algorithm for stack culling that can
reduce the number of expensive ray primitive intersection tests with
a small overhead in the number of traversal steps.

Our approach lends itself naturally to a dedicated hardware im-
plementation where the available on-chip memory is heavily con-
strained. However, with an implementation that uses compressed
BVH nodes as well as our short stack traversal algorithm, the la-
tency and bandwidth for fetching leaf geometry is likely to become
the next dominant bottleneck. Although we do apply some degree

of geometry compression by converting triangle pairs to quads, a
more effective geometry compression scheme could be an impor-
tant goal for the future.
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